
International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 11, November 2016

ISSN (Online): 2409-4285 www.IJCSSE.org Page: 248-252

Short and Secure CLS Pattern Using Simple Crypto Analysis Hash

Technique

Ashok Kumar
1
 and Kalyani Dasari

2

1
M-Tech (CNIS),

2
Assistant Professor, Department of IT, VNRVJIET, Hyderabad

ABSTRACT
In the irregular oracle miniature under the hardness

presumptions of K-CAA and Inv-CDHP we introduce a CLS

(Certificateless Signature) which proved to be a much secured

in traditional public key cryptosystem (PKC). We overcome

the incompetent MaptoPoint hash technique by replacing a

simple cryptoanalysis hash technique by indulging most

common properties of CLS conspires. The extent of signatures

generated in this paper is nearly 160 bits, which strength our

assumption towards less calculation cost and essentially more

productive than every single known CLS plans. In this way it

can be utilized generally and particularly in low-data

transmission correspondence situations.

Keywords: Crypto Analysis, CLS Pattern, Hash Technique.

1. INTRODUCTION

To maintain a strategic distance from the innate key

escrow issue in ID-based open key cryptosystem, Al-

Riyami and Paterson [2] presented another approach

called certificateless open key cryptography (CLPKC) in

2003. The CLPKC is transitional between conventional

PKC and ID-based cryptosystem. In a certificateless

cryptosystem, a client's private key is not created by the

PKG alone. Rather, it comprises of fractional private

key created by the Key Generation Center (KGC) and

some mystery esteem picked by the client. Along these

lines, the KGC can't get the client's private key. In a

manner that the key escrow issue can be tackled.

Intuitionally, CLPKC has pleasant elements obtained

from both ID-based cryptography and conventional

PKC. It lightens the key escrow issue in ID-based

cryptography and in the meantime decreases the cost

and disentangles the utilization of the innovation when

contrasted and conventional PKC. In a conventional

open key cryptosystem (PKC), any individual who

needs to send messages to others must get their

approved declarations that contain people in general

key. Nonetheless, this necessity brings loads of

declaration administration issues by and by. With a

specific end goal to maintain a strategic distance from

the issues and the cost of appropriating people in general

keys, Shamir [1] firstly presented the idea of personality

based open key cryptosystem in 1984, which permits a

client to utilize his personality data, for example, name,

Email address, IP address or phone number, and so on as

his own open key. It implies that there is no requirement

for a client to keep an open key catalog or acquire other

clients' authentications before correspondence. Be that

as it may, there exists an inalienable disadvantage called

private key escrow issue in an ID-based open key

cryptosystem. Since this cryptosystem includes a Private

Key Generator (PKG), which is in charge of producing a

client's private key in light of his personality. Thus, the

PKG can actually unscramble any cipher text or produce

any client's mark on any message.

Generally, the PKI suffers two problems, namely:

scalability and certificate management. The Identity-

based Public Key Cryptography (IDPKC) came to

address these two problems, but could not offer true

nonrepudiation due to the key escrow problem. In ID-

PKC, an entity's public key is derived directly from

certain aspects of its identity, for example, an IP address

belonging to a network host, or an e-mail address

associated with a user. Private keys are generated for

entities by a trusted third party called a private key

generator (PKG). The first fully practical and secure

identity-based public key encryption scheme was

presented. Since then, rapid development of ID-PKC has

taken place. Currently, there exist Identity-based Key

Exchange protocols (interactive as well as

noninteractive), signature schemes, and Hierarchical

schemes. It has also been illustrated how ID-PKC can be

used as a tool to enforce what might be termed

"cryptographic work-flows", that is, sequences of

operations (e.g. authentications) that need to be

performed by an entity in order to achieve a certain goal.

In 2003 Al-Riyami and Paterson introduced the concept

of Certificateless Public Key Cryptography (CL-PKC)

to overcome the key escrow limitation of the identity-

based public key cryptography (ID-PKC). In CL-PKC a

trusted third party called Key Generation Center (KGC)

supplies a user with a partial private key. Then, the user

combines the partial private key with a secret value (that

is unknown to the KGC) to obtain his full private key. In

249

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 11, November 2016

A. Kumar and K. Dasari

this way the KGC does not know the user's private key.

Then the user combines his secret value with the KGC's

public parameters to compute his public key. The CL-

PKC is considered a combination between PKI and

identity based cryptography. It combines the best

features of the PKI and IDPKC, such as no key escrow

property, reasonable trust to trust authority and

lightweight infrastructure. It provides a solution to the

non-repudiation problem, through enabling a user to

generate his/her full long-term private key, where the

trusted third party is unable to impersonate the user. The

use of certificateless cryptography schemes have

appeared in literature, this includes the uses of

certificateless encryption Certificateless signatures and

certificateless signcryption. Al-Riyami and Paterson

scheme proposed binding technique to link the public

key by one-to-one correspondence with the identity to

guarantee that every user in the system has one

public/private key pair, the big contribution of using this

binding technique is that upgrade the CL-PKC to trust

level 3 as Girault's definition of the trust levels. Al-

Riyami and Paterson proved that their certificateless

encryption scheme is secure against fully-adaptive

chosen cipher text attack (IND-CCA) and also proposed

certificateless digital signature scheme along with

certificateless key agreement protocol and hierarchal

certificateless encryption scheme (HCLPKE).

In the CLS plans, an uncommon hash work called

MapToPoint work which is utilized to outline character

data into a point on elliptic bend is required. In any case,

the hash capacity is wasteful in spite of the fact that

there has been much examination on the development of

such hash calculation. Consequently, utilizing general

cryptographic hash work rather than the MapToPoint

capacity can make strides the productivity of CLS plans.

At present, numerous short marks conspires in

conventional PKC have been proposed since Boneh et

al. develop a short signature called BLS signature,

which is simply a large portion of the measure of the

mark in DSA (320-bits) with equivalent security. As a

result of the little size of short marks, they are required

in situations with stringent transmission capacity

imperatives, for example, bar-coded computerized

marks on postage stamps. By the by, to our best

information, no short CLS plans have been discovered

in this way. Certificateless marks produced by plans

have roughly 320-bits sizes and marks in have no less

than 480-piece sizes if utilizing an elliptic bend on

F397.Henceforth, it's fundamental for us to develop a short

CLS plot.

2. FRAMEWORK & IMPLEMENTATION

Proposed framework has below mentioned algorithms

which formulate the CLS scheme.

System Setup:

Building a system of frames like param’s and master

key by considering as security parameter l.

Initial-Private- Key-retriever:

Retrieving initial private key by taking inputs as

param’s, master key and user's identity

Secret-pass-key-generator:

To generate a secret pass key (r) by considering param’s

and a user's identity ID

Private-Key-generator:

To generate a private key (SKid) by taking the values

initial private key , private key .

Public-Key-generator:

To generate a public key by considering param’s and

secret pass key.

Signature-generator:

To generate Signature (S) by using param’s, message,

user's identity and private key

Signature-verifier:

By using param’s, a public key PKid, a message m, a

user's identity ID, and a signature S, as input values and

returns 1 means that the signature is accepted.

Otherwise, 0 means rejected.

Pairing scheme which is used for this analysis is bilinear

pairing technique, which is mentioned as below.

Bilinear pairing is a map e: G1×G1→G2 which satisfies

the following properties, by considering G1 as a cyclic

additive group of prime order q, and G2 as a cyclic

multiplicative group of the same order q.

250

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 11, November 2016

A. Kumar and K. Dasari

(1) Bilinearity

e(aP, bQ)=e(P, Q)ab, where P, QaG1, a, baZq*.

(2) Non-degeneracy

There exists P, QaG1 such that e(P, Q)≠1.

(3) Computability

There is an efficient algorithm to compute e(P, Q) for all

P, Q a G1. Bilinear pairing happens by considering

modified Tate or Weil pairing on super singular elliptic

curve.

3. PROPOSED SYSTEM

Below is the theoretical sample code which uses

param’s, a public key PKid, a message m, a user's

identity ID, and a signature S, as input values and

returns 1 means that the signature is accepted.

Otherwise, 0 means rejected.

#define polynomials under the form of:

#a + b*x + c*x^2 + ...

class Polynomial(object):

 def __init__(self, c, p):

 if type(c) is Polynomial:

 self.coefficients=c.coefficients

 elif isinstance(c, ModP):

 self.coefficients = [c]

 elif not hasattr(c, '__iter__') and not

hasattr(c, 'iter'):

 self.coefficients=[ModP(c,p)]

 else:

 self.coefficients = c

 self.p = p

 self.coefficients=

strip(self.coefficients, ModP(0,p))

 self.name = '(Z/%dZ)[x]' % p

 #check if the polynomial is 0

 def isZero(self):

 return self.coefficients == []

 #function to print the polynomial

 def __repr__(self):

 if self.isZero():

 return '0'

 #iterate through the list of coefficients

and add them to one string

 else:

 return ' + '.join(['%s x^%d' %

(a,i) if i>0 else '%s' % a for i,a in

enumerate(self.coefficients)])

 #length of the polynomial

 def __abs__(self):

 return len(self.coefficients)

 #length of the polynomial

 def __len__(self):

 return len(self.coefficients)

 #subtract to polynomials by subtracting their

coeff.

 def __sub__(self, other):

 return self + (-other)

 def __rsub__(self, other):

 return -self + other

 #iterate through the coefficients

 def __iter__(self):

 return iter(self.coefficients)

 #negative of a polynomial

 def __neg__(self):

 return Polynomial([-a for a in

self],self.p)

 #iterate through polynomial

 def iter(self):

 return self.__iter__()

 #the leading coefficient of a polynomial

 def leadingCoefficient(self):

 return self.coefficients[-1]

 #the degree of a polynomial, ie largest

exponent

 def degree(self):

 return abs(self)-1

 #check whether two polynomials are equal or

not by comparing coefficients and same degree

 def __eq__(self,other):

 return self.degree() == other.degree()

and all([x==y for (x,y) in zip (self,other)])

 #add two polynomials by adding their

coefficients

 def __add__(self,other):

 #if integer, than one needs to make a

constant polynomial

 if isinstance(other, int):

 other=Polynomial([other],self.p)

 #adding the coefficients together.

fillvalue defines the value to use if one polynomial

 #has a smaller degree than the other one.

 newCoefficients = [sum(x) for x in

itertools.zip_longest(self,other, fillvalue=

ModP(0,self.p))]

 return Polynomial(newCoefficients,

self.p)

 def __radd__(self, other):

 return self + other

 #multiplication of two polynomials

 def __mul__(self,other):

 if isinstance(other, int):

 return

self*Polynomial([other],self.p)

 if self.isZero() or other.isZero():

 return Zero(self.p)

 else:

 #set all coefficients to zero

251

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 11, November 2016

A. Kumar and K. Dasari

 newCoefficients=

[ModP(0,self.p) for _ in range(len(self)+ len(other) - 1)]

 #general formula for the

coefficients of the multiplication of two poly.

 for i,a in enumerate(self):

 for j,b in

enumerate(other):

 newCoefficients[i+j] = newCoefficients[i+j] +

a*b

 return

Polynomial(newCoefficients,self.p)

 def __rmul__(self, other):

 return self * other

 #divmod for polynomials

 def __divmod__(self,divisor):

 quotient = Zero(self.p)

 remainder = self

 divisorDeg = divisor.degree()

 divisorLC=divisor.leadingCoefficient()

 while remainder.degree() >=

divisorDeg:

 StockExponent=remainder.degree() -

divisorDeg

 StockZero = [ModP(0,self.p)

for _ in range(StockExponent)]

 StockDivisor=

Polynomial(StockZero +[remainder.leadingCoefficient()

/ divisorLC], self.p)

 quotient = quotient +

StockDivisor

 remainder = remainder -

(StockDivisor * divisor)

 return quotient, remainder

 #modular function for polynomials

 def __mod__(self, divisor):

 x,y = divmod(self, divisor)

 return y

 def __pow__(self, p):

 x = self

 r = Polynomial(1,self.p)

 while p != 0:

 if p % 2 == 1:

 r = r * x

 p = p - 1

 x = x * x

 p = p / 2

 return r

 #polynomial to the power p modulo other

 def powmod(self, p, other):

 x,y = divmod(self**p, other)

 return y

 #usual division

 def __truediv__(self, divisor):

 if divisor.isZero():

 raise ZeroDivisionError

 x,y = divmod(self, divisor)

 return x

 #usual division

 def __div__(self, other):

 return self.__truediv__(other)

#returns a Zero polynomial

def Zero(p):

 return Polynomial([],p)

#check whether a polynomial is irreducible or not

def isIrreducible(polynomial, p):

 #polynomial "x"

 x = Polynomial([ModP(0,p), ModP(1,p)],p)

 powerTerm = x

 isUnit = lambda p: p.degree() == 0;

 for _ in range(int(polynomial.degree() / 2)):

 powerTerm = powerTerm.powmod(p,

polynomial)

 gcdOverZmodp = gcd(polynomial,

powerTerm - x)

 if not isUnit(gcdOverZmodp):

 return False

 return True

4. RESULTS

And the expected result is as follows.

Below table displays how efficient our proposed CLS is

comparitively with

5. CONCLUSION

Another worldview that rearranges the customary PKC

and takes care of the inborn key escrow issue endured

by ID-based cryptography is Certificateless public key

cryptoanalysis. Certificateless signature is a standout

amongst the most vital security primitives in CLPKC.in

the irregular prophet demonstrate under the hardness

252

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 11, November 2016

A. Kumar and K. Dasari

presumption of k-CAA and Inv-CDHP we think of a

short CLS conspire that is turned out to be secure which

we proposed in this paper. Our plan, other than

maintaining all attractive properties of past CLS plans,

it is quicker and shorter than all proposed CLS plans as

for the calculation cost and the mark measure.

REFERENCES

[1] Al-Riyami S.S., Paterson K.G. (2003) Certificateless

public key cryptography. In Proceedings of the

ASIACRYPT 2003, pages 452–473. Springer-Verlag,

LNCS 2894.

[2] Bellare M., Namprempre C., Neven G. (2004) Security

proofs for identity-based identification and signature

schemes. In: Proceedings of the EUROCRYPT 2004,

p268–286. LNCS 3027. Springer-Verlag, Berlin (Full

paper is available at Bellare’s homepage URL:

http://www-cse. ucsd.edu/users/mihir).

[3] Bellare M., Rogaway P. (1993) Random oracles are

practical: A paradigm for designing efficient protocols.

In: First ACM Conference on Computer and

Communications Security. ACM Fairfax, pp62–73

[4] Blake-Wilson S., Menezes A. (1999) Unknown key-

share attacks on the station-to-station (STS) protocol.

In: Public key cryptography, second international

workshop on practice and theory in public key

cryptography, PKC ’99. LNCS 1560. Springer-Verlag,

Berlin, pp154–170

[5] Boneh D., Franklin M. (2001) Identity-based

encryption from the Weil pairing. In: Proceedings of

the CRYPTO 2001, LNCS 2139. Springer-Verlag,

Berlin, p213–229

[6] ElGamal T. (1985) A public key cryptosystem and a

signature scheme based on discrete logarithms. IEEE

Trans Inform Theory 31(4):469–472

MATHCrossRefMathSciNetGoogle Scholar

[7] Girault M. (1991) Self-certified public keys. In:

Proceedings of the EUROCRYPT 91, LNCS 547.

Springer-Verlag, Berlin, p490–497

[8] Goldwasser S., Micali S., Rivest R. (1998) A digital

signature scheme secure against adaptive chosen-

message attack. SIAM J Comput 17(2):281–308

CrossRefMathSciNetGoogle Scholar

[9] Hu B.C., Wong D.S., Zhang Z., Deng X. (2006) Key

replacement attack against a generic construction of

certificateless signature. In: Information security and

privacy: 11th Australasian conference, ACISP 2006,

LNCS 4058. Springer-Verlag, Berlin, pp235–246

[10] Huang X., Susilo W., Mu Y., Zhang F. (2005) On the

security of certificateless signature schemes from

Asiacrypt 2003. In: Cryptology and network security,

4th international conference, CANS 2005, LNCS 3810.

Springer-Verlag, Berlin, pp13–25

[11] Pointcheval D., Stern J. (1996) Security proofs for

signature schemes. In: Proceedings of the

EUROCRYPT 96, LNCS 1070. pp387–398

[12] Shamir A. (1984) Identity-based cryptosystems and

signature schemes. In: Procedings of the CRYPTO 84,

LNCS 196. Springer, Berlin, pp47–53

[13] Yum D.H., Lee P.J. (2004) Generic construction of

certificateless signature. In: Information security and

privacy: 9th Australasian Conference, ACISP 2004,

LNCS 3108. Springer-Verlag, Berlin, pp200–211

[14] Zhang F., Safavi-Naini R., Susilo W. (2004) An

efficient signature scheme from bilinear pairings and

its applications. In: Seventh international workshop on

theory and practice in public key cryptography (PKC

2004), LNCS 2947. Springer, Berlin, pp277–290

[15] Zhang Z., Wong D., Xu J., Feng D. (2006)

Certificateless public-key signature: Security model

and efficient construction. In: Fourth international

conference on applied cryptography and network

security (ACNS 2006), LNCS 3989. Springer, Berlin,

pp293–308.

