
International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 12, December 2017

ISSN (Online): 2409-4285 www.IJCSSE.org Page: 315-322

Parallel Computing Models and Analysis of OpenMP Optimization on
Intel i7 and Xeon Processors

Kajal Chauhan1, Dr. C. K. Bhensdadia2 and Dr. M. B. Potdar3

1 M.Tech Student, Dharmsinh Desai University, Nadiad-387001, Gujarat, India

2 Head of Dept. of Computer Engineering, Dharmsinh Desai University, Nadiad-387001, Gujarat, India

3 Project Director, Bhaskaracharya Institute for Space Applications and Geo-Informatics, Gandhinagar 382007, India

1okajalchauhan261@gmail.com, 2ckbhensdadia@ddu.ac.in, 3mbpotdar11@gmail.com

ABSTRACT
With the increasing data sizes and complexity of
algorithms, and dead lock reached in processor clock
frequency due to power constraints, multi core and many
core CPUs and GPUs have been developed for parallel
computing. This has become an inevitable approach for
high volume data processing such as image processing.
There have been several APIS for parallel processing
developed with added merits and potentials, such as
OpenACC, OpenMP, OpenCL and CUDA. Among
these, the CUDA is implementable on NDVIDIA's GP-
GPUs. Whereas others are implementable on multicore
and many core CPUs and GPUs, include Intel Xeon Phi
co-processors. Here we review both the hardware and
software architectures of the devices and API. Then,
compare the performance of OpenMP 2.x API when
used on Intel Quad Core i7 (8 threads) processor with
dual Intel Xeon 12 core (48 threads) CPUs by optimizing
an image processing code on clustering in multispectral
feature space using remote sensing data. The maximum
speedup 5x is achieved on Intel i7 core CPU and
speedup of 13x is achieved on Intel Xeon CPU by
invoking dynamic scheduling when number of threads
deployed are large. Minimum and maximum stack size
required for different number of threads are also
explored.

Keywords: Intel i7, Xeon, OpenACC, OpenMP, OpenCL,
CUDA, Image Processing, K-Means Clustering
Algorithm, Code Optimization.

1. INTRODUCTION

The Remote Sensing applications and many other
applications like Medical imaging, Multimedia
Technology and advanced and fast graphics used in
gaming software etc. deal with large volume of data
which require time effective parallel data processing

algorithms and techniques. Now a day, the high speed
computers are available which contains many core and
multi core processors and coprocessors with high
configuration for parallel computation. Parallel
Computing has become an inevitable approach for high
volume data processing such as image processing and
also increasing demand of real time processing of images.
Older approaches of multi core programming have been
deprecated and hence there is a need to develop newer
approaches that drastically increase the speed and
performance.
There are different types of parallelism to achieve
parallel computing in terms of software. First one is the
instruction level of parallelism, which extracts the
parallelism from a single instruction stream working on a
single stream of data which provide low level of
parallelism. Second is the processor level parallelism
supporting more than one processor used for highly
parallel application in which overall application is
divided into subtasks and then computed on multi-
processor simultaneously. Due to this, an application can
utilize all the processors boosting the application
performance. While there are high performance
computers which contain large number of cores and
multi-processors that can be simultaneously used for
computing to get high performance and faster speed. For
this, parallel application need to execute on many core
and multi-processor architecture and require
programming models that automatically scale with the
number of processors or cores available and also provide
synchronization between them.

1.1 Parallel Processing on CPU/GPU

In Remote sensing image processing, large number of
images are processed and repetitive operations are
performed on pixels using SIMD execution model on
multi-processor in parallel to get better performance.
There are many hardware and software approaches for

316

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 12, December 2017

K. Chauhan et. al

exploiting high level parallelism. Types of parallelism in
hardware are Vector processor, SIMD instruction, GPUs
and multi-processors. Whereas the Vector processor and
SIMD instruction limit their parallelization features to a
specific application. The GPU and multi-processor
parallelization capability is dependent on programming
model.
GPU which is usually used for highly parallel
applications like computer graphics and image
processing, their highly parallel structures make them
more efficient than General Propose CPU.GPU has a
massively parallel architecture consisting of many
numbers of cores designed for handling multiple tasks
simultaneously while CPU consists of a few cores
optimized for sequential/serial processing. Instead of
using capabilities of CPU and GPU alone, it is more
beneficial to use both the CPU and GPU merged on
single integrated circuit to increase better data exchange
rates and low power utilization. The computing using
both the CPU and the GPU co-processors together is
called Heterogeneous Computing. To Implements this
system, there are a few programming models like CUDA,
OpenACC, OpenCL and OpenMP are proposed with
their limitations and strengths.

1.2 Heterogeneous Computing

Heterogeneous computing is a system which contains
more than one type of processor. They are multi-core or
many core processor systems which gain performance
not just by adding the similar processors but by adding
the different type of co-processors to utilize specialized
processing capabilities for handling tasks [2].
Now a day, data size is continuously increasing and
techniques or methods have been developed for
processing. However, the computation times goes
beyond the time limit of their utility value. Therefore,
the Architectures which are not only fast but also
accelerate the performance are needed to be used. Hence
the focus is on CPU and GPU combination. It is one of
the heterogeneous Architecture where the best features
of both can be combined to achieve even further
computation gain and low power consumption. To
process large number of Remote sensing images in
heterogeneous system (CPU+GPU), it can provide high
performance computation power and reducing
computation time instead of using CPU and GPU alone
because both CPU and GPU have distinct architecture
feature.
In Heterogeneous Architecture of CPU+GPU based
processing, the CPU is generally known as Host and
GPU as a Device and they can be described as the
master-slave relation. GPU device is managed by CPU.
Multi-cores CPUs have cores up to few tens and Many-
cores GPU have large number of cores up to a few

thousands at least. Architecture uses Flynn’s Single
Program Multiple Data (SPMD) and new Single
Program Multiple Task (SPMT) execution models. Due
to very Different Architecture and programming models
of CPU and GPU based heterogeneous computing, it
presents several challenges like run time load on
Processors(Pus)GPUs and achieving load balancing
between CPU and GPU because the different number of
cores among them. The distribution of type of work
among the host and devices should be such that it utilizes
the computational capabilities maximally. It is observed
that different amount of work-divisions to CPU and GPU
can lead to vastly different performance. Many
experiments have been reported earlier for developing
techniques for workload distribution, automatic
scheduling of computation tasks over heterogeneous
computing system(HCS)etc., and manage data placement
to achieve better utilization of both processor powers to
get fast processing, high performance, less overhead
required for communication between CPU-GPU and less
power consumption[3].
Different Programming languages can be used based on
ease of programming, ability to write optimized code,
ability to target multiple Pus and product from different
vendors etc. The CUDA programming works only on
NVIDIA’s GPUs and uses the ACML (AMD Core Math
Library). The OpenMP is most widely used due to its
portability and relative ease of programming based on
compiler directives. OpenMP works on both Intel Xeon
Processor and Intel Xeon phi co-processor to achieve
heterogeneous computing [3]. Due to the complexity of
programming on GPU, porting a scientific application to
the heterogeneous parallel system is a challenging task.
Therefore, some latest research, such as MPtoStream, a
compiler for extended OpenMP on AMD’s High
Performance GPUs has been developed. [4]

1.2.1 CUDA Programming

NVIDIA CUDA (Compute Unified Device Architecture)
is an API for parallel computing. It is a Programming
model provides multi-threaded Single Instruction
Multiple Data (SIMD) model for implementing
computation on GPUs. The CUDA takes advantage of
massive computation power of GPU by utilizing large
number of co-processor cores to the programmer. Its
computing platform enables communicating fine-grained
(thread level) and coarse-grained (block level) data and
task parallelism using the extended C and C++
languages. In fine grained approach, after each
instruction cycle, the switching between multithreads is
done with lag in the execution of each thread. And in
contrast, in coarse grained approach, the switching
between the multithreads happens when the existing
thread causes some long latency event. CUDA

317

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 12, December 2017

K. Chauhan et. al

Programmer can also choose a high-level programming
language such as C, C++ or FORTRAN for parallel
programming and these languages also support
programming frameworks such as OpenACC and
OpenCL which provide compiler directives used for
parallel programming in both the homogeneous and
heterogeneous programming with CPU and GPUs. The
CUDA provides high level of parallelism and is the most
prominent method for GPGPU acceleration, although it
is only supported by NVidia GPU’s architecture [1].

1.2.2 OpenCL Programming

The Open Computing Language, OpenCL, is a
framework for writing parallel programs that execute
across Heterogeneous platforms. It has been designed to
be used not only with GPUs but also in other platforms
like multi-core CPUs. Also, it extends support to AMD,
NVidia and Intel GPUs equally. The main design goal of
OpenCL is to use all computational resources of the
system by efficient use of parallel programming model
based on C99 extensions and it also defines a multilevel
memory model. In parallel application, the OpenCL
executes serial code on host (both mono core and multi-
core CPUs) threads using task parallelism and parallel
code in many device (GPU) threads using data
parallelism across multiple processing element.
Like CUDA, the OpenCL is well suited for SPMD
parallel design pattern. Now a day, CUDA and OpenCL
are most prominent for GPGPU frameworks but CUDA
is limited to NVidia Framework. Therefore, it does not
cover wider range of types of applications as OpenCL
[1].

1.2.3 OpenMP Programming

OpenMP is Programming Model stands for Open
Specification for Multi-Processing. OpenMP is called
directive based programming model for shared memory
multi-processor using multithreading to develop parallel
application in C, C++ and Fortran Programming
Languages. The OpenMP Application Program Interface
(API) provides a programmer with a simple and flexible
interface for building portable parallel applications. It
allows parallel execution on multi-core or many-core co-
Processor by applying OpenMP Directives in user
defined code region. It is the programmer responsibility
to take advantages of thread parallelism using OpenMP
Directives. In Directive based Programming model
efforts are not much required to modify existing code
written for homogeneous CPUs. It is easy to get
optimized code with OpenMP Programming Model
without the loss in performance.

Table 1: Comparison of OpenCL, OpenMP and CUDA [18]

OpenMP Implements the fork-join model to achieve
parallelism. The concept of master-slave relation where
the master thread runs on host CPU and the slave threads
run on GPU device(s) to accelerate the performance.
Many extremely parallel code blocks can contain data
dependency. To achieve parallelism, it is required to
detect such dependency, classify its type of dependency
and remove the dependency. It is inadequate to apply the
OpenMP Directives for enhancing performance, several
other factors are also affecting like parallel overhead and
loop scheduling. In parallel programming applications,
for the loop level parallelism the OpenMP is more
efficient. Because of this, the utilization of GPU is more
efficient in parallel computing [5, 7].

1.2.4 OpenACC Programming [20]

OpenACC, which stands for Open Accelerators, is one
of the programming standards or API for parallel and
heterogeneous computing developed by Cray, Caps,
NVidia and PGI. The OpenACC is a directive-based
programming model (like OpenMP) which is a
collection of compiler directives to identify loops and
regions of code in standard C,C++ and Fortran from host
CPU to an attached many core devices. Because of this,
it doesn’t require more programming efforts to
accelerators. The OpenACC directives provide

 OpenCL OpenMP CUDA
Type Heterogeneou

s CPU-GPU
Computing

Heterogeneou
s
CPU-GPU
Computing

GPGPU
Computin
g

Parallelism Data
Parallelism
and
Task
Parallelism

Data
Parallelism
and Task
Parallelism

Data
Parallelis
m

Language or
library

C99 and
C++11
extensions

Directives
for
C,C++AND
FORTRAN

C,C++
extensions

offloading clEnqueue Target device Kernel
<<<…>>
>

Explicit data
mapping and
movement

bufferWrite
function

Map
(to/from/
tofrom/alloc)

cudaMem
cpy
function

Mutual
Exclusion

atomic Locks,
critical,
atomic,
single.

atomic

Error
Handling

exception omp cancel _

318

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 12, December 2017

K. Chauhan et. al

portability across multi-core CPUs as well as
accelerators (GPUs) of various kinds, not just NVidia
GPUs, including many-core processors like Intel Xeon
phi chips from Intel.

Table 2: Comparison of directive based Programming Models[20].

With the OpenACC Directives, the programming efforts
required for parallelization is higher in comparison to
Cuda and OpenCL, while OpenMP and OpenACC are
same in terms of effort required for Programming. But
they are quite different in terms of implementation.
OpenACC was developed by some of the OpenMP
members due to which it got benefits of wide range
accelerated systems. Some of the features of OpenMP
such as data directives were first developed in
OpenACC. The main difference between them is that the
OpenACC targets scalable parallelism by specifying that
a loop as a parallel loop. Now its compiler's
responsibility to run this as fast as possible on the
hardware. The OpenMP targets more general parallelism
at task level, which is inherently not scalable and also, it
is prescriptive which is very much directed by
programmer it may be strength as well as weakness also.
OpenMP have more features than OpenACC.
Though, the GPGPU provides high parallelism and fast
computation speed for parallel applications, but its
programming complexity presents a significant
challenge for developer and has been greatly simplified
by introducing improved library functions for better
memory management [21]. Even though the CUDA
Programming model was developed specifically for
NVIDIA GPU, but programming GPU is still complex
as compared to programming to General Purpose CPU
and Intel Xeon phi co-processor/Processor using parallel

programming model such as OpenMP. Hence, there has
been research efforts on development of Techniques
based on Compiler framework for automatic source to
source translation of standard OpenMP application into
CUDA-based GPU[7]. The OpenMP v4.0 [6] has
Directives to program accelerator and new Directives to
address issues like the management of a shared-
memory many core accelerator. OpenMP v4.0 focuses
on latest Intel Xeon phi co-processor and processor
technologies. OpenMP v4.0 contains some key directives
like “target” which compile and load for the execution
onto a device and the “map” clause for selection of data
item to be transferred to and from the device. The “target
data” directive allows allocating and transfer data before
the actual offload takes place and the “device” clause
allows specifying the exact device to be used if more
than one is present in the system. [18]

2. DYNAMIC SCHEDULING IN OPENMP

As many parallel programming techniques are available,
we have reviewed their individual benefits and
limitations which in turn affect how well they perform
for different applications. Here, we used OpenMP API,
because it is directive based portable programming. The
compiler automatically ignores the directives if they do
not support OpenMP. The directives are recognized and
processed by a compiler; they also offer opportunities for
compiler-based optimizations [5].
We evaluated the performance of K-Means clustering
algorithm on Intel® Quad Core™ i7-4790@3.60 GHz
processor and also on two Intel® Xeon® 12-core
processor E5-2680 v3@ 2.50 having 16 GB Primary
Memory. The Intel® Core™ i7-4790 being Quad Core
Processor provides maximum 8 logical threads and
Intel® Core™ i7-4790 have 2 processors with 12 cores
each providing maximum 48 logical threads (2 logical
threads per core). We have used the Microsoft Visual
Studio ultimate 2012, which supports OpenMP 2.0
standard. We have used “OMP_GET_WTIME” function
for calculating execution time per iteration in
millisecond. The OpenMP is really beneficial if we use
the compiler directives at right place in the application. It
gives efficient performance and gain application
performance.
We observed that the performance on both the
processors execution time get reduced as we increase the
number of threads. Some clauses of OpenMP like
schedule(dynamic) are only effective when a large
number of threads are deployed. In Fig 5 and 6, it is
shown that the effect of number of threads on different
directives. The execution time gets reduced from 12.8
milliseconds by using directives "#pragma omp parallel
for" with schedule (dynamic) for 48 threads and it is

 OpenACC OpenMP

Target Focused on
Accelerating
Computing

Focused on
general purpose
Computing

Approach Descriptive Prescriptive

Interoperabi
lity

Extensive
interoperabil
ity

Limited
interoperability

Mutual
exclusion

Atomic Locks, critical,
atomic,
single and master

Join wait Task wait

 More mature
for
accelerators

More mature for
multi-core

319

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 12, December 2017

K. Chauhan et. al

reduced to 1.4 millisecond for 8 threads. Therefore, here
we can observe that it is not enough to increase number
of threads but also it is required to insert appropriate
OpenMP directives in parallel code to enhance
performance. We have compared the k-means clustering
algorithm on Intel® Core™ i7-4790@3.60 GHz
Processors and Intel® Xeon® Processor E5-2680 v3@
2.50 GHz processors with 16 GB Primary Memory in
Fig 7 and Fig 8, respectively. We have taken different
Numbers of threads and execution time per iteration in
both processors. We have used time per iteration rather
than total time, which depend on the number of iterations
required for same set convergence criterion. The total
time for same convergence depends on the initial cluster
centres chosen. By utilizing all 48 logical threads
available on two 12-Core Xeon processors, we have got
2x more speedup as compared to Intel® Core™ i7-4790
processor having 8 logical threads.

Fig 5.Comparision of OpenMP Directives for 8 Threads.

Fig. 4. Optimize the K-Means algorithm using OpenMP directives.

Fig. 6.Comparision of OpenMP Directives for 48 threads.

Here, We have also calculated the speedup factors for
Intel® Quad Core™ i7-4790@3.60 Processor
(maximum 8 logical threads) and Intel® two 12 Core
Xeon® Processor E5-2680 v3@2.50 Processors
(maximum 24 logical threads) with OpenMP and
without OpenMP and compared in Fig 9 and Fig 10,
respectively. In case of Intel® Core™ i7-4790@3.60
Processor with 8 threads, we have achieve maximum
speedup of 4.3x while in case of Intel® Xeon®
Processor E5-2680 v3@ 2.50 Processor with 48 threads,
the speedup achieved is14.2x. This high speedup is
achieved in spite of the Xeon processor is slower in
speed compared to i7 processor. This is attributed
mainly to the large number of threads available on
system with Xeon processors and additionally due to the
dynamic scheduling of the threads.
In the processors of achieving the optimization using
OpenMP, the stack size allotment plays an important
role. Depending on the size of data being handled, there
is minimum size requirement and also maximum stack
size required is determined by the number of threads.
Maximum stack size possible is 2 GB with Windows
OS. If the stack size lower than minimum, the entire data
cannot be held in memory. If stack is very large, it is
found that the system spends more time is data transfers
between the primary memory (RAM) and the cache
memory, resulting in the increasing in time of data
processing and loss of advantage gained through
OpenMP optimization. We have analyzed the allowable
min and max stack sizes for achieving optimization.

320

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 12, December 2017

K. Chauhan et. al

Fig. 7. Performance wrt Number of threads on Intel® nCore™1 i7-
4790 Processor

Fig. 8. Performance wrt Number of threads on Intel® Xeon®
Processor E5-2680 v3

Fig.11 shows the variation of the minimum Stack size
requirement with number of threads before and after the
code optimization. We get the reduction in minimum
stack size up to 2MB from 60 to 62 MB by optimizing
the code using OpenMP. The minimum stack size
requirements depends on the volume of the data being
processed. With the increase volume of data, it increases
linearly in proportion to the data volume. This
dependence is shown in Fig. 12.

Fig. 9.Speedup on Intel® Core™ i7-4790@3.60 Processor

Fig. 10.Speedup on Intel® Xeon® Processor E5-2680 v3@ 2.50
Processor

The execution time per iteration remains near constant
up to some specific stack size and thereafter, it increases
in by a factor of more than 2. We have observed that
specific stack size also varies with number of threads as
it is shown in Fig 12. Beyond the Maximum Stack size
for a given number of threads, the time shaved in code
optimization is overwhelmed by CPU-RAM data transfer
times. We observed that the maximum stack size
permitted per thread is nearly inversely proportional to
the number of threads. The product the max size and
number of threads is nearly constant at 1.8 GB. One
thread can use 1.8 GB (the maximum available stack
size) and, as number of threads increase, the max stack
size allowed decreases and ultimately 48 threads can
optimize even with stack size of about 40 MB. The
product of number of threads and max stack size remains
constant at about 1.8GB. In our program executions for
optimization, the stack size set at near mean value
depending on the maximum number of threads used.

mailto:i7-4790@3.60

321

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 12, December 2017

K. Chauhan et. al

Fig. 11. Minimum Stack size requirement before and after code
optimization for different number of threads.

Fig.12 Minimum Stack size requirement for different number of data
size factors wrt to 256*256 image size.

Fig. 13. Maximum Stack size variation with increasing number of
threads.

We also evaluated the Stack size required to achieve
proper optimization with OpenMP with respect to
number of threads before and after code optimization.
Minimum stack size depends on the volume of data
being analyzed. The maximum stack size allowed for a
set value of number of threads decreases with increasing
number of threads. Total available stack memory of
about 2GB is shared equally among the number threads
invoked.

3. CONCLUSIONS

Efficient Parallel Programming Technique which are not
only fast but also accelerate the performance that fully
benefits from systems by utilizing both processors and
co-processors is a challenging problem. In this Paper, we
provide a comparison of OpenMP, CUDA, OpenCL and
OpenACC Parallel Programming Techniques and we
have research their individual benefits and limitations,
which successively have an effect on however well they
perform for various applications and Hardware. CUDA
and OpenCL are more prominent for GPGPU
Programming and OpenMP latest version 4.5 provided
Offloading directives to achieve heterogeneous
computing by utilizing both CPU + GPU in Intel Xeon
phi coprocessor. We also done the code optimization of
k-mean clustering algorithm using OpenMP 2.0 and
analyzed it on Intel® Core™ i7-4790@3.60 Processor
and Intel® Xeon® Processor E5-2680 v3@ 2.50 and the
experimental result shows that OpenMP directive gives
efficient result, if directives are inserted in right place
and more number of threads are used. Our work also
shows the Performance and Speedup of Processors
Intel® Xeon® Processor E5-2680 v3@ 2.50 is high
compare to Intel® Core™i7-4790@3.60.

ACKNOWLEDGMENTS

We are thankful to Shri T. P. Singh, Director, BISAG,
for providing infrastructure and encouragement, and
Special thanks Dr. C.K. Bhensdadia, Dharmsinh Desai
University, Nadiad for permitting to carry out this
project at BISAG.

REFERENCES

[1] Culler, David, et al., "LogP: Towards a realistic model
of parallel computation." ACM Sigplan Notices. Vol.
28. No. 7. ACM, 1993.

[2] AMD-What is Heterogeneous Computing?
http://developer.amd.com/resources/heterogeneous-
computing/what-is-heterogeneous-computing/

322

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 12, December 2017

K. Chauhan et. al

[3] Mittal, Sparsh, and Jeffrey S. Vetter, "A survey of
CPU-GPU heterogeneous computing techniques."
ACM Computing Surveys (CSUR) 47.4 (2015): 69.

[4] Yang, XueJun, et al., "MPtostream: An OpenMP
compiler for CPU-GPU heterogeneous parallel
systems." Science China Information Sciences(2012):
1-11.

[5] Rohit Chandra, Leonardo Dagum, Dave Kohr,
DrorMaydan, Jeff McDonald, Ramesh Menon,
“Exploiting Loop-Level Parallelism,” in Parallel
Programming in OpenMP ,San Francisco, USA,2000

[6] Newburn, Chris J. et al., "Offload compiler runtime for
the Intel® Xeon Phi coprocessor." Parallel and
Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2013 IEEE 27th International. IEEE,
2013.

[7] Lee, Seyong, Seung-Jai Min, and Rudolf Eigenmann,
"OpenMP to GPGPU: a compiler framework for
automatic translation and optimization" ,ACM Sigplan
Notices 44.4 (2009): 101-110.

[8] Capotondi, Alessandro, and Andrea Marongiu, "On the
effectiveness of OpenMP teams for cluster-based many-
core accelerators", in High Performance Computing &
Simulation (HPCS), 2016 International Conference on.
IEEE, 2016.

[9] Intel Xeon Phi Product Family,
https://www.intel.com/content/www/us/en/products/pro
cessors/xeon-phi/xeon-phi-processors.html

[10] Cramer, Tim, et al., "Openmp programming on Intel r
Xeon phi tm coprocessors: An early performance
comparison", in Proc. Many Core Appl. Res.
Community (MARC) Symposium, 2012.

[11] Intel Corporation, “Intel RXeonPhiTM Coprocessor
Instruction Set Architecture Reference Manual,”
September 2012, reference number 327364-001.

[12] Intel Pentium Processor,
https://www.intel.com/content/www/us/en/products/pro
cessors/pentium.html

[13] Intel Xeon phi Programming Environment,
https://software.intel.com/en-us/articles/intel-xeon-phi-
programming-environment

[14] Kowalik, Janusz, Piotr Arłukowicz, and Erika Parsons.
"Speeding Up Computers." arXiv preprint
arXiv:1603.05487 (2016).

[15] Hybrid Computing – Coprocessors/Accelerators Power-
Aware Computing – Performance of Applications
Kernels
https://www.cdac.in/index.aspx?id=pdf_xeon-phi-prog-
overview-hypack

[16] CUDA vs. Phi: Phi Programming for CUDA
Developers,
http://www.drdobbs.com/parallel/cuda-vs-phi-phi-
programming-for-cuda- dev/240144545

[17] James Jeffers James Reinders, "Introduction" in Intel
Xeon Phi Coprocessor High Performance
Programming,2013

[18] A comparison of heterogeneous andManycore
Programming Model,
https://www.hpcwire.com/2015/03/02/a-comparison-of-
heterogeneous-and-manycore-programming-models/

[19] NVIDIA Tesla GPU Architecture AND CUDA
Environment,https://code.msdn.microsoft.com/windows
desktop/NVIDIA-GPU-Architecture-45c11e6d

[20] Is OpenACC The Best Thing To Happen To
OpenMP?,https://www.nextplatform.com/2015/11/30/is
-openacc-the-best-thing-to-happen-to-openmp/

[21] Wilt, Nicholas. The cuda handbook: A comprehensive
guide to gpu programming. Pearson Education, 2013.

