
International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 11, November 2017

ISSN (Online): 2409-4285 www.IJCSSE.org Page: 273-283

Towards an MDD Based Framework for Self Adaptive IoT

Applications Development

Yousef Abuseta

Computer Science Department, Faculty of Science, Al-Jabal Al-Gharbi University, Zintan, Libya

yousef.m.abusetta@gmail.com

ABSTRACT

As technology and communication advances, more

devices (and things) are able to connect to the Internet

and talk to each other to achieve a common goal which

results in the emergence of the Internet of Things (IoT)

era. It is believed that IoT will bring up a limitless

number of applications and business opportunities that

will affect almost every aspect of our life. Research has

already been conducted to investigate the challenges that

obstruct the realization of IoT along with the promising

solutions that pave the way for the acceptance and

enabling of IoT. Among the research areas that is of a

great importance to making IoT paradigm possible is the

presence of a unified programming framework that

masks the heterogeneity of the involved devices of the

IoT platform. Such a framework guides system

developers throughout the IoT application development

process. In this paper, we investigate the IoT concept

and its high level architecture in general and focus more

on the application development aspect. We believe that

IoT applications are highly dynamic in nature and thus

need to be engineered with the self adaptive and

autonomic concepts in mind. Therefore, our proposed

IoT software development lifecycle was based on the

IBM architecture blueprint for autonomic systems. To

cater for the runtime dynamic and heterogeneity aspects

of IoT applications, we adopt the MDD paradigm for our

proposed development framework. We highlight the core

requirements of a resilient development framework that

accommodates the necessary concepts and processes for

a successful IoT application.

Keywords: IoT, Framework Design, SAS, Feedback

Control Loop.

1. INTRODUCTION

The Internet of Things (IoT) has Increasingly gained

remarkable attention in industry as a way of networking

and connecting different types of physical devices and

forming networks of information [1]. This concept is the

based on the pervasive presence of a variety of things or

objects – such as Radio-Frequency Identification (RFID)

tags, sensors, actuators, mobile phones, etc. – which,

through unique addressing schemes, are able to interact

with each other and collaborate with their neighbors to

achieve common goals [2]. A definition by the

International Telecommunication Union (ITU) states that

the IoT is "A global infrastructure for the Information

Society, enabling advanced services by interconnecting

(physical and virtual) things based on, existing and

evolving, interoperable information and communication

technologies". Connecting these devices can be

accomplished either directly through cellular

technologies such as 2G, 3G and 4G or they can be

connected via a gateway, forming a local area network,

to get connection to the Internet. The gateway method

enables forming Machine to Machine (M2M) networks

via the use of various radio technologies. Popular

examples of such technologies include Zigbee (based on

the IEEE 802.15.4 Standard), Wi-Fi (based on the IEEE

802.11 Standard), 6LowPAN over Zigbee (IPv6 over

Low Power Personal Area Networks), or Bluetooth

(based on the IEEE 802.15.1) [3]. The IoT have

influenced many domains such as health care, fitness,

education, entertainment, social life, energy conservation,

environment monitoring, home automation, and

transport systems[Hindawi-4].

 A large body of research has been carried out to

investigate the challenges that hinder the realization of

IoT as well as the promising solutions that assist in

making the IoT a reality. Amongst the research areas that

is of a great importance and has gained much attention to

making IoT paradigm possible is the development of a

unified programming framework that helps overcome the

heterogeneity of the involved devices and provides a set

of horizontal service components that are generic enough

to accommodate various vertical applications . Such a

framework guides system developers throughout the IoT

application development process. In this paper, we

investigate the IoT concept and its high level architecture

in general and focus more on the application

development aspect. We highlight the core requirements

274

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 11, November 2017

Y. Abuseta

of a resilient development framework that

accommodates the necessary concepts and processes for

a successful IoT application.

The rest of the paper is structured as follows. Section 2

serves as a background on related concepts and

approaches to the work of this paper. Section 3 reviews

some related work on development techniques for IoT

applications. Section 4 presents the proposed IoT

application development framework. The paper is

concluded in section 5 with some outlined directions for

future work.

2. BACKGROUND

2.1 IoT high Level Architecture

This section is dedicated to the architecture layers of IoT

that have been proposed by researchers in the literature.

Up until now, to the best of our knowledge, there is no

an agreed upon architecture that is used by all

researchers of IoT. However, there is a set of layers that

is expected to be present in every proposed architecture,

though it is likely to be presented with different concepts

and terminology. As it consists of significantly diverse

objects, IoT requires an open architecture to enable, to

large extent, the interoperability among the heteroge-

neous systems and distributed resources [5].

 Before we delve into the discussion of the IoT reference

architecture, a number of important concepts, which lay

foundation for the IoT paradigm, is worth presenting

here. In [6], a description of the IoT domain model is

introduced. Such a model is mainly based on the

interaction relationship between two entities, namely the

user and physical entity.

The user here is not meant to be restricted to a human

but it can also be any kind of digital artifacts such as

services, applications or software agents that have the

interest (goal) of interacting with the physical entity.

The physical entity is any identifiable object that is part

of the physical environment such as humans, cars,

animals, computers, electronic appliances, etc. The user

role itself can be played by another physical entity in

which case the Machine to Machine (M2M) interaction

is established. In fact, this is the heart of the IoT

paradigm in which a number of things or machines are

interacting and exchanging data in order to achieve a

collective goal. Interaction usually occurs indirectly via

some dedicated services that would either get

information about the physical entity or perform some

actions on it. The latter usually changes the state of the

physical entity. A virtual entity, such as an object in

Object Oriented Programming, is the digital

representation of a physical entity. The virtual and

physical entities are usually related to each other by

embedding into or placing nearby the physical entity

one or more ICT devices (e.g. sensors, tags, actuators).

The sensors and actuators concepts are used heavily in

many paradigms such as autonomic systems, self

adaptive systems and wireless sensor networks. These

devices enable the technological interface to the physical

entity where data can be collected and actions are

applied. However, this interface is not defined directly

using the sensors and actuators devices but via drivers

(software components) that are able to interface with

these devices and perform the read (from sensor) and

command dispatching (to actuator) operations [7]. In

many IoT reference architectures, the physical entity

along with the ICT devices are referred to as the sensing

or device layer which resides at the bottom of the

architecture. The IoT application starts at this layer

where physical entities send signals carrying some data

to be processed, checked for violation and stored for

further processing . The signals usually make use of

binary proprietary protocols which vary from one

physical entity to another.

As pointed out in [8], the direct communication between

the physical entity and the application processing the

sent data is quite difficult. It is put down to two

fundamental issues: 1) the application that processes data

received from devices needs to scale to each single

device. 2) the security issue is compromised since the

application processing the data usually uses a heavy

protocol for authentication while the device usually uses

a firmware that cannot be reprogrammed to have things

such as passwords and certificates. To address these

issues, an on field gateway is suggested. Such a gateway

can be used, beside its main task, to aggregate data

collected from a number of nearby devices and discover

locally any possible undesirable system states. The latter

helps in shielding the backend system from extra work

that might affect its performance and ability to scale and

manage more devices. Also, the gateway may be used as

an adapter to transform a binary based protocol to a

more standard protocol to be read by the other

components of the system.

Consequently, a middleware layer is a crucial

component of IoT architecture as it acts as a bridge

between the heterogeneous devices and the enterprise

applications that access them. Figure 1 shows a high

level reference architecture of IoT platform.

275

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 11, November 2017

Y. Abuseta

Fig. 1. A high level reference architecture of IoT platform.

2.2 Feedback control loops

Self adaptation or autonomic capabilities can be
introduced to the software system either internally or
externally [9]. In the internal approach, the adaptation
logic (managing system) is intertwined with the core
application (managed system) which may take the form
of the exception handling. In this case, the adaptation
engine is system dependent and thus difficult to maintain,
evolve, and reuse. In contrast, in the external approach,
the concerns of the adaptation logic are separated from
the core application. Most of the existing approaches
adopt the external approach since it enables the
realization of some important software qualities such as
the reusability and modifiability. The IBM architecture
blueprint [10] is an example of this approach. Such an
architecture is centered around the idea of the feedback
control loops.
A feedback loop is a control loop where the output of the

controlled system is fed back to the input. It allows

therefore to adjust operations according to differences

between the actual output and the desired output. In

other words, feedback control loops are entities that

observe the system and initiate adaption. A feedback

loop typically involves four key activities: collect,

analyze, decide, and act [11]. Sensors collect data from

the running system and its environment which represents

its current state. The collected data are then aggregated

and saved for future reference to construct a model of

past and current states. The data is then analyzed to infer

trends and identify symptoms. The planning activity then

takes place and attempts to predict the future and prepare

change plan to act on the running system through a set of

effectors or actuators. [12].
In IBM architecture blueprint, the managing system
consists of four main activities: monitor, analyze, plan
and execute. These activities share a knowledge base
component which contains information about the system
state as well as the policy engine that controls the system
functioning. A set of sensors is used to collect the
important data to the adaptation process and send them
to the monitor for further processing while a set of
effectors is used to apply the corrective changes stated in
the plan.

3. RELATED WORK

Several approaches have been proposed to address the

design and development of IoT applications. Here we

present some well known and popular approaches to the

IoT area. DiaSuite [13] offers a design language,

providing high-level, declarative constructs that are

dedicated to describing the application’s architecture,

along with the smart objects it orchestrates. HYDRA [14]

is a service oriented middleware. It accommodates a set

of software components used for handling many tasks

required for the development of intelligent applications.

A semantic interoperability is provided here using

semantic web technologies. It also supports dynamic

reconfiguration and self-management. IoT-A [6], has

proposed a reference architecture for the development of

IoT applications. This reference architecture serves as a

tool for building compliant IoT architectures. it provides

views and perspectives on different architectural aspects

that are of concern to stakeholders of the IoT

Oracle [15], also has developed a reference architecture

for the IoT platform with an emphasis on the middleware

layer.

Also, Microsoft has proposed and developed a reference

architecture called Azure [8] for creating and enabling

IoT solutions.

4. Proposed IoT Application Development

Framework

As we believe that the IoT applications are highly

dynamic in nature, engineering such applications must

be conducted with the self adaptive and autonomic

properties () in mind. We believe that self adaptive

system concepts should be made first class entities and

thus need to be inherent from the early stages of the

https://www.hindawi.com/journals/jece/2017/9324035/#B27

276

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 11, November 2017

Y. Abuseta

engineering of IoT applications. Our proposed

framework therefore has adopted the IBM architecture

blueprint [10] for modeling the feedback control loop

that consists of the Monitor, Analyze, Plan, Execute and

Knowledge base components. We also build the work

presented in this paper on a previous work [16] for the

engineering of autonomic systems using the Model

Driven Development (MDD) technique as well as on

some related design patterns [17] and proposed

framework for testing and simulating Self Adaptive

Systems [18].

4.1 Characteristics of Proposed Framework

For the success and effectiveness of the proposed

framework, a number of characteristics has to be

exhibited. Such characteristics are described as follows:

 Generic: it should be generic enough to be used

across a variety of vertical applications and

services.

 Ease of use: it should be easy to use from the

point of view of system developers.

 Extensibility: it concerns with the ability of the

framework to be extensible to accommodate

new features and capabilities. For instance, it

should be easy to introduce a new physical

entity as well as new protocols that support

these entities. Customization: it concerns with

the ability of the framework to be customized

and tailored for some specific systems or some

organizations of feedback control loops (e.g.

decentralized or hierarchical) .

 Testability: it concerns with the ability of the

framework to be tested for some tasks and

activities. Testing the process of monitoring a

specific system property and taking the

appropriate corrective actions is only one

example.

4.2 Conceptual View Of Proposed Framework

This section serves as a conceptual view of the proposed

framework. We adopt the modular approach where the

framework is decomposed into a set of subsystems

organized into a number of packages or namespaces.

Each subsystem, in turn, contains a number of

components (or subsystems) that cooperate to

accomplish some specific tasks. Fig. 2 depicts this

conceptual view of the framework which consists of the

managing system, managed system and environment.

Fig. 2. A high level reference architecture of IoT platform.

Unlike the traditional autonomic software systems, the

managed system here represents the physical entities or

devices, as well as the virtual entities that represent

them, which are of paramount importance to IoT

applications. As for the managing system, the feedback

control loop plays the management role. As discussed

earlier, an IoT application is considered to be a real-time

system and thus functions and responses to events in this

platform must be conducted in a timely manner. To

enable the backend system (probably hosted in the

cloud) to be acting on time, one promising approach is

to perform some of the management activities locally

and avoid sending unnecessary data. This suggests

modeling the monitor component as a multi function

gateway nearby the managed system (devices). Also, the

executor component can be positioned locally to further

reduce the burden on the backend system which results

in a distributed organization of the feedback control loop

as shown in Fig.1. Such an organization is one of

various forms of the possible interactions between the

MAPE-K components which were presented and

discussed in [19]. The environment can be defined as any

external actor that affects the managed system or the

adaptation decisions of the managing system in some

way. Therefore, the environment property represents any

contextual information that is external to the system in

question and contributes to its runtime state.

4.3 Proposed Framework Requirements

This section serves as an analysis for the software

requirements of the proposed framework. These

277

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 11, November 2017

Y. Abuseta

requirements are essential to provide a flexible

framework that allows developers to model and develop

IoT applications and services in a seamless manner. The

requirements specification process is a use case driven.

To achieve the separation of concerns design principles,

we consider one subsystem (e.g. managed system) at a

time when defining the different use cases.

4.3.1 Managed system requirements

The managed system represents the system under

development which is composed of the physical entities

or devices that are involved in the IoT application along

with the virtual entities that represent them as software

components. The following is the requirement that is

related to the managed system and expected to be

available in the framework:

 provide interface for IoT managed system model:

This requirement is related to providing

appropriate interfaces to define and model the

managed systems. Figure. 3 depicts the UML use

case diagram for the managed system

requirement.

Fig. 3. UML use case diagram for the managed system requirement.

4.3.1.1 As stated earlier, the managed system represents

the physical entities or devices along with the virtual

entities that represent them as software components.

Thus, one of the main requirement here is to provide a

mechanism or an interface for registering and integrating

the physical entity with the IoT application in question.

However, the different physical entities and their virtual

representations are of little value unless were modeled in

the context of a set of business processes that represents

the reasons behind developing such an application. Our

approach starts with defining a domain where each

domain consists of a set of tasks and each task is realized

through the interaction of a number of services

(composite). Below is a description of these concepts.

Domain. The domain here is the system under

consideration which comprises a number of tasks.

Examples of domain include the healthcare , home

automation, smart metering and smart transportation.

Task. A task is a high level goal that has to be addressed

in order to realize the overall system requirements. Each

task, in turn, contains a set of services responsible for

addressing and achieving that task. A task in a healthcare

system is, for example, monitor energy meter reading at

home.

Service. A service is an abstraction of a software or

hardware entity (physical entity or device) that has a role

to play in addressing the task goal. These services, later

at the code generation stage, are mapped into software

components such as RESTful web services, CORBA,

Java, .NET, etc. A blood pressure sensor is an example

of service.

Composite. The services of a particular task coordinate

with each other to address the purpose of that task. Such

coordination, which involves a set of interactions, is

encapsulated in an entity called composite. A composite

might contain only one service. However, a useful

composite is often composed of more than one service.

4.3.2 Managing Systems Requirements

The managing system represents the management layer

whose responsibility is to introduce autonomic

capabilities to managed systems. Therefore, the

requirements here are concerned with activities such as

monitoring, analysis, planning and execution (in addition

to the policy and symptoms definitions).

 Monitoring system requirements: The monitoring

system should capture issues related to what, when

and how to monitor. In the IoT platform, the what

to monitor aspect is concerned with monitoring

properties of the physical entities which are of

significant importance to the managing system and

keeking them within a desirable range is a key to a

resilient autonomic system. The when to monitor

aspect is concerned with the timing of the

monitoring. Readings of interesting properties can

be measured and reported to the monitor at fixed

delay, in response to an event and/or on demand.

How to obtain the readings of interesting properties

is the concern of the how to monitor aspect. Here,

we use a sensor embedded in or located nearby the

physical entity to make a direct measurement of

these properties.

278

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 11, November 2017

Y. Abuseta

Fig. 4. A high level structure of Monitoring system.

Also, since the monitor is assigned the task of

aggregating and filtering data collected from

sensors, a local policy engine should be introduced

to the monitoring system. The environment can also

affect the state of the monitored

4.3.2.1 Based on the above discussion, we can list the

following requirements for the monitoring activity:

- Specify device property for monitoring

- Specify monitoring mode

- Create local policy engine

- Register sensors with monitor

Figure 5 shows the UML use case diagram for the

monitoring system requirements.

Fig. 5. UML use case diagram for the monitoring system requirements.

Monitoring components: these represent the main classes

involved in the monitoring activity which are described

as follows:

- Sensor: its sole responsibility is to collect data

about the physical entity (thing) property that is

of high importance to the adaptation process

and then send it to the monitor. There are two

kinds of sensor namely the time-triggered and

event-triggered sensors.

- System property: Also referred to as the

context element, this is the property that is of a

direct connection and great interest to the

adaptation process. This property is the target of

the monitoring activity and the main concern of

the monitor component is to keep its value

within a desirable or acceptable range. Often, a

threshold is used to accomplish this task.

Examples of system properties include server

load, server throughput, response time and

bandwidth usage. The system property

contributes to the runtime system state.

- Environment property: The environment

property represents any contextual information

that is external to the system in question and

contributes to its runtime state. Examples of

such properties include the time of operating,

the current client connections in client-server

architecture, etc.

- Threshold: This is the value that the monitor

component will compare against to decide

whether the current value of the system

property is still within a desirable and

acceptable range. An example of a threshold

would be if room temperature becomes greater

than

- System runtime state: At runtime, the system

state is represented by the combination of the

values of system properties and the properties

representing the environment or the context

within which the system is operating. Each

system has a desirable state driven by its goals

and non functional requirements. Often the

deviation from this desirable state is the trigger

of the adaptation process.

- Monitor: Its main tasks are to filter and aggregate

data received from a set of sensors and send it to the

analyzer (directly or indirectly) component for any

further and usually complex analysis. In the IoT

platform, big data analysis tools are typically used to

handle the massive amounts of data generated by the

physical entities. The aggregated data received from

the sensors represent the system (or subsystem)

runtime state at one particular point in time. In

terms of software design patterns, the monitor and

sensor are linked together with the observer design

pattern as shown in Figure 6.

279

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 11, November 2017

Y. Abuseta

Fig. 6. UML Class diagram for Monitor and Sensor relationship.

 Analysis system requirements: The requirements of

the analysis system in the IoT application are

concerned with running big data analysis tools to

extract some trends and patterns in the managed

system behavior and accordingly issue a corrective

action request. The corrective action could be either

reactive or proactive. The former is a type of action

taken in response to some undesirable situation

which has already happened while the latter is

acting based on predictions and anticipation of the

future. However, the real-time nature of the IoT

platform imposes the adoption of the proactive type

where some algorithms and techniques (e.g. genetic

algorithms) from the AI field are applied. The

outcome of the analyzer component answers the

question of whether an adaptation is required or not.

 Therefore, the following requirements are defined

for the analysis activity:

- Run data analysis tool

- compose adaptation request

Figure 7 shows the UML use case diagram for the

analysis system requirements.

Fig. 7. UML use case diagram for analysis system requirements.

Analysis components: lists the main classes involved in

the Analysis system and describes each class's

responsibilities.

- Analyzer: Its responsibility is to receive logged

data into the knowledge base (by monitor) and

analyze them for any possible symptoms of

system goals and requirements violation. The

analyzer gets notified by the knowledge base

component of the raising of new system state

event. Therefore, it is linked with the

knowledge base using the Observer design

pattern where it plays the observer role and thus

has to implement the observer interface. Once

the analysis process has completed, the analyzer

notifies the plan component of any necessary

adaptations via sending an adaptation request.

Fig. 8. UML Class diagram for Analyzer and Knowledge relationship.

- Symptom: Represents one of the undesirable

states that the system in question must detect

and take corrective actions against. A highly

loaded server is an example of such symptoms.

Symptoms work with a set of combined

conditions and when these conditions are

satisfied, the analyzer raises an adaptation

request signal and sends it, along with the

necessary information, to the plan component.

- AdaptationRequest: An adaptation request is

created and sent to the plan component along

with the necessary information. The latter

includes the event describing the symptom (e.g.

high patient temperature) and the frequency of

this event in a specified time window (e.g. last

hour).

- SymptomRepository: It contains a set of

predefined symptoms that the system in

question should avoid and heal up from once . It

also provides a facility to add new emerging

symptom at runtime via the addSymptom

operation. This component is usually part of the

knowledge base of the feedback control loop.

- Planning system requirements: The

requirements of the planning system are

concerned with constructing the change plan

280

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 11, November 2017

Y. Abuseta

which is composed of a set of corrective actions

in response to an adaptation signal raised by the

analyzer component. In this stage, the questions

of what actions to be taken and in what order

are answered. Therefore, the following

requirements are defined for the planning

activity:

- Compose change plan

- Dispatch change plan to execution system

Figure 9 shows the UML use case diagram for the

planning system requirements.

Fig. 9. UML use case diagram for the planning system requirements.

Planning components: lists the main classes involved in

the planning system and describes each class's

responsibilities as follows:

 Plan: It is responsible for constructing the

change plan in response to an adaptation

request received from the analyzer. The plan

component uses the policy engine for

accomplishing its task and then sends the

constructed change plan to the execute

component to dispatch these changes. The plan

is linked with the analyzer using the observer

design pattern where it takes on the observer

role and thus implements the observer interface.

- PolicyEngine: It contains the policies (high

level goals) that control the operating and

functioning of the system in question. Policies

may take the form of Event-Condition-Action

(ECA) rules which determine the actions to be

taken when an event is raised (or expected)

provided some specific conditions are met. The

policy engine belongs to the knowledge base of

the feedback control loop. It provides the

necessary interface for the system

administrators to define and modify the policies

of the system at hand.

- ChangePlan. It contains the actions that should

be dispatched to the execute component in

order to perform the adaptation and corrective

actions. It is often called the strategy in which

the actions are performed in specific and logical

order.

 Execution system requirements: The

requirements of the execution system are

concerned with executing the adaptation actions

or change plan that is received from the plan

component. These actions must be executed in

some specific order (sequentially or

concurrently or maybe mixed of the two) as

stated in the plan. The execution system uses a

set of actuators to apply the required changes to

the managed system which usually involve

setting new values to the system or

environment properties which are collectively

constitute the system state. The following

requirements are specified for the execution

activity:

- Execute change plan

- Update system state

Figure 10 shows the UML use case diagram for the

execution system requirements.

Fig. 10. UML use case diagram for the execution system requirements.

Execution components: lists the main classes involved in

execution system and describes each class's

responsibilities.

- Executor: It is responsible for sending the

corrective actions to one or more effectors in a

specific order.

- Effector: It is responsible for applying changes

to system or environment properties according

to some actions received from the executor

component.

The central class of this activity is the executor which

contains the update operation where it receives the

change plan (corrective actions) from the plan. Once it

has received the corrective actions, it dispatch them to a

set of effectors to apply the changes to the target system

and environment properties. Therefore, it is linked with

281

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 11, November 2017

Y. Abuseta

the plan and effector components using the Observer

design pattern where it plays both the observer role (with

the plan) and the subject role (with the effector) and thus

has to implement two interfaces, namely the observer

and the subject.

 Knowledge requirements: The requirements of

the knowledge system are concerned with the

policy and event (or symptom) definitions and

therefore the requirements here are as follows:

- Define policy

- Edit policy

- Define event

- Edit event

- Log data or alerts

Figure 11 shows the UML use case diagram for the

knowledge system requirements.

Fig. 11. UML use case for the Knowledge system requirements.

 Environment requirements: The environment is

defined as any external actor that affects the

system in some way. Therefore, the

environment property represents any contextual

information that is external to the system in

question and contributes to its runtime state.

The environment requirement of the

framework is as follows:

- construct environment model.

Figure 12 shows the UML use case diagram for the

environment system requirements.

Fig. 12. UML use case for the environment system requirements.

All of the requirements presented so far constitute the

functions and capabilities that should be provided by the

proposed framework. Such high level requirements are

then detailed and expressed in terms of software

programs using one of the programming languages.

4.4 Software Process For Iot Application

Development

This section is dedicated to the software process or

development methodology followed by our development

framework. The proposed framework adopts the MDD

paradigm to gain some valuable benefits which are very

crucial in designing distributed systems in general and

IoT applications in particular. Raising the abstraction

level and separation of concerns are among those

benefits. Achieving those design principles will result in

a resilient system that can be a future proof and would

survive in a world of rapidly changing system

requirements and technologies, and full of heterogeneous

devices, platforms and programming languages.

Accordingly, our IoT application development

methodology is divided into a number of fundamental

stages: Platform Independent Model (PIM), Platform

Specific Model (PSM) and the code. A description of

these stages is presented below.

 Platform Independent Model (PIM)

The first stage of our software process is the Platform

Independent Model (PIM) where the system under

consideration is expressed in neutral concepts; no

specific platform design decisions are made in this

model. As stated in the proposed framework

requirements section, the concepts used to model the

system in question are Domain, Task, Service and

Service composite. The artifacts produced in this stage

are expressed in the form of XML documents.

 Autonomic Platform Independent Model (APIM)

In this stage, the software components that are

responsible for handling the management and self

adaptation aspects of IoT applications are defined.

Components such as the monitor, analyzer and planner

are specified here and associated with the physical

devices (managed systems). However, these components

282

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 11, November 2017

Y. Abuseta

are expressed here in a technology and platform

independent manner in the form of XML documents.

 Autonomic Platform Specific Model (APSM)

At this stage, the specific elements and terms for a

specific platform, Java web services for instance, are

added to the model obtained in the previous stage. The

resulted model is expressed in an XML document.

 Autonomic Code Generation

Generating autonomic code is performed at the last stage

of the proposed process where the appropriate

transformer is run for the autonomic code generation for

a particular platform. Two Java based transformers are

used here, one for generating the code for the core

services and another to generate the autonomic

components. To target Java Web services platform, for

instance, the JavaCodeGenerator.java file is applied to

the JavaWebServiceTemplate.java to generate the core

Java web services. Likewise, the

AutonomicJavaGenerator.java file is applied to the

AutonomicJavaWSTemplate.java in order to generate

the autonomic web services.

5. CONCLUSION AND FUTURE WORK

In this paper we have investigated the challenges that

obstruct the realization of IoT as well as the promising

solutions that pave the way for the acceptance and

enabling of IoT. We focused specifically on the

application layer and how to provide system developers

with the right tools and methodology to develop IoT

applications in a seamless and effective way. We

believe that IoT applications are highly dynamic in

nature and thus need to be engineered with the self

adaptive and autonomic concepts in mind. Therefore, our

proposed IoT software development lifecycle was based

on the IBM architecture blueprint for autonomic

systems. We also have taken the real-time nature of IoT

applications and its influence on the organisation of the

MAPE-K components into consideration. Accordingly,

we adopted the master-slave pattern in which the

adaptation logic takes a hierarchical relationship between

one master component who is responsible for the

analysis and planning of the adaptations and between a

set of slave components whose responsibilities are to

monitor properties of interest and execute the adaptation

actions. To cater for the runtime dynamic and

heterogeneity aspects of IoT applications, we adopt the

MDD paradigm for our proposed development

framework. Raising the software abstraction level, which

is the central idea behind MDD, and postponing the

adherence to a specific platform or programming

language is a valuable requirement in the IoT platform.

A further work is required to address the following

issues:

 More detailed design patterns for each

component of the MAPE-K based IoT

application development framework.

 A case study based evaluation of the proposed

development framework.

 A development environment for modeling and

simulating IoT applications.

ACKNOWLEDGMENT

The author would like to thank his academic department

for the precious support received throughout the work on

this paper.

REFERENCES

[1] S. Zarghami, Middleware for Internet of Things, Master

thesis, University of Twente, November 2013.

[2] D. Giusto, A. Iera, G. Morabito, L. Atzori (Eds.), The

Internet of Things, Springer, 2010. ISBN: 978-1-4419-

1673-0.

[3] V. Karagiannis, P. Chatzimisios, F. Vázquez-Gallego,

J. Alonso-Zarate, "A Survey on Application Layer

Protocols for the Internet of Things", Transaction on

IoT and Cloud Computing, Vol. 1, No. 1, January 2015.

[4] P. Sethi, "Internet of Things: Architectures, Protocols,

and Applications", Journal of Electrical and Computer

Engineering, Vol 2017, 2017.

[5] S. Tarkoma, A. Katasonov, " Internet of Things:

Strategic Research Agenda (SRA)", Finnish Strategic

Centre for Science, Technology and Innovation, version

1.0, September 2011.

[6] A. Nettstrater, "Internet of Things Architecture (IoT-

A)", A Reference Model for IoT, V1.5. Available at

http://www.meet-iot.eu/deliverables-IOTA/D1_3.pdf

[7] P. Patel, D. Cassou, " Enabling High-level Application

Development for the Internet of Things", Journal of

Systems and Software, Vol. 103, pp 62-84, 2015.

[8] Microsoft Azure, "Enable IoT Solutions using Azure",

White paper, 2015.

[9] M. Salehie and L. Tahvildari, “Self-adaptive software:

landscape and research challenges,” ACM Transactions

on Autonomous and Adaptive Systems, vol. 4, no. 2,

article 14, 2009.

[10] IBM. "An architectural blueprint for autonomic

computing. IBM", 2005.

[11] S. Dobson et al., "A survey of autonomic

communications". ACM Transactions Autonomous

Adaptive Systems (TAAS) 1(2), 223–259 (2006).

[12] Y. Brun et al."Engineering Self-Adaptive System

through Feedback Loops,” in Software Engineering for

283

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 11, November 2017

Y. Abuseta

Self Adaptive Systems", Springer-Verlag Berlin

Heidelberg 2009, Cheng B. et al. (Eds), pp 48-70, 2009.

[13] B. Bertran et al., "DiaSuite: a Tool Suite To Develop

Sense/Compute/Control Applications. Science of

Computer Programming, Fourth Special Issue on

Experimental Software and Toolkits, Elsevier, 2014.

[14] Hydra Project, http://www.hydramiddleware.eu/

[15] Oracle, "Internet of Things: Role of Oracle Fusion

Middleware", White paper, 2014.

[16] Y. Abuseta, A. Taleb-Bendiab. "Model Driven

Development based Framework for Autonomic Mobile

Commerce Engineering", TAMoCo 2009: 51-60, 2009.

[17] Y. Abuseta, K. Swesi. "Design Patterns for Self

Adaptive Systems Engineering". International Journal

of Software Engineering & Applications (IJSEA),

Vol.6, No.4, July 2015.

[18] Y. Abuseta, K. Swesi. "Towards a Framework for

Testing and Simulating Self Adaptive Systems

Proceeding of the 6th IEEE International Conference on

Software Engineering and Service Science, pp 70-76,

Beijing, China, 2015

[19] D. Weyns et al. "On patterns for decentralized control

in self-adaptive systems". In R. de Lemos, H. Giese, H.

A. Muller, and M. Shaw, editors, ¨ Software

Engineering for Self-Adaptive Systems, volume 7475

of Lecture Notes in Computer Science, pp 76–107.

Springer, 2012.

	2.1 IoT high Level Architecture
	2.2 Feedback control loops
	3. RELATED WORK
	4. Proposed IoT Application Development Framework
	4.1 Characteristics of Proposed Framework
	4.2 Conceptual View Of Proposed Framework
	4.3 Proposed Framework Requirements
	4.3.1 Managed system requirements
	The managed system represents the system under development which is composed of the physical entities or devices that are involved in the IoT application along with the virtual entities that represent them as software components. The following is the...
	 provide interface for IoT managed system model: This requirement is related to providing appropriate interfaces to define and model the managed systems. Figure. 3 depicts the UML use case diagram for the managed system requirement.
	4.3.1.1 As stated earlier, the managed system represents the physical entities or devices along with the virtual entities that represent them as software components. Thus, one of the main requirement here is to provide a mechanism or an interface for...

	4.3.2 Managing Systems Requirements
	The managing system represents the management layer whose responsibility is to introduce autonomic capabilities to managed systems. Therefore, the requirements here are concerned with activities such as monitoring, analysis, planning and execution (in...
	4.3.2.1 Based on the above discussion, we can list the following requirements for the monitoring activity:
	 Analysis system requirements: The requirements of the analysis system in the IoT application are concerned with running big data analysis tools to extract some trends and patterns in the managed system behavior and accordingly issue a corrective action r
	- Planning system requirements: The requirements of the planning system are concerned with constructing the change plan which is composed of a set of corrective actions in response to an adaptation signal raised by the analyzer component. In this stage, th
	 Execution system requirements: The requirements of the execution system are concerned with executing the adaptation actions or change plan that is received from the plan component. These actions must be executed in some specific order (sequentially or co

	4.4 Software Process For Iot Application Development
	At this stage, the specific elements and terms for a specific platform, Java web services for instance, are added to the model obtained in the previous stage. The resulted model is expressed in an XML document.
	 Autonomic Code Generation

	5. CONCLUSION AND FUTURE WORK

