
International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 6, June 2016

ISSN (Online): 2409-4285 www.IJCSSE.org Page: 97-107

A Fitness Function for Search-Based Testing of Java Classes, which is

based on the States Reached by the Object under Test

Ina Papadhopulli
1
 and Elinda Meçe

2

1, 2

Department of Computer Engineering, Polytechnic University of Tirana, Tirana, Albania

1
ipapadhopulli@fti.edu.al,

2
ekajo@fti.edu.al

ABSTRACT
Genetic Algorithms are among the most efficient search-based

techniques to automatically generate unit test cases today. The

search is guided by a fitness function which evaluates how

close an individual is to satisfy a given coverage goal. There

exists several coverage criteria but the default criterion today

is branch coverage. Nevertheless achieving high or full branch

coverage does not imply that the generated test suite has good

quality. In object oriented programs the state of the object

affects its behavior. Thereupon, test cases that put the object

under test, in new states are of interest in the testing context. In

this article we propose a new fitness function which takes into

consideration three factors for evaluation: the approach level,

the branch distance and the new states reached by a test case.

The coverage targets are still the branches, but during the

search, the state of the object under test evolves with the scope

to produce individuals that discover interesting features of the

class and as a consequence can discover errors. We

implemented this fitness function in the eToc tool. In our

experiments the usage of the proposed fitness function towards

the original fitness function results in a relative increase of

15.6% in the achieved average mutation score with the cost of

a relative increase of 12.6% in the average test suite size.

Keywords: Structural Testing, Test Case Generation, Search

Based Software Testing, Fitness Function, Object State,

Coverage Criteria, Mutation Score.

1. INTRODUCTION

Due to the fact that the influence of software in all areas

has grown rapidly in the past 40 years, the software has

become very complex and also its reliability is

fundamental. All the software development phases have

been adapted to produce these complex software

systems, but especially the testing phase is of critical

importance and testing thoroughly today’s software

systems is still a challenge. According to a study [1]

conducted by the National Institute of Standard &

Technology, approximately 80% of the development

cost is spent on identifying and correcting defects. It is a

well-known fact that it is a lot more expensive to correct

defects that are detected during later system operation.

Considering past experiences, inadequate and ineffective

testing can result in social problems and

human/financial losses. In order to improve the testing

infrastructure, several efforts have been made to

automate this process.

In the unit testing level, there are three approaches

towards automation: random testing, static analysis

(Symbolic Execution [3]) and metaheuristic search. A

considerable number of tools have been developed

based on these approaches; eg. RANDOOP [4],

EvoSuite [5], AgitarOne [6]. Nevertheless, the

effectiveness of these tools is still not completely proved,

because the results obtained from the experiments

depend on the subjects under test. Usually, a coverage

criteria is used to evaluate these tools, but achieving a

high degree of code coverage does not imply that a test

is actually effective at detecting faults [7]. According to

[8], today there is no tool to find more than 40.6% of

faults.

This article is focused on structural testing at the unit

level of Java programs using Search-Based Software

Testing (SBST) [9]. According to [10], SBST has been

used to automate the testing process in several areas

including the coverage of specific program structures, as

part of a structural, or white-box testing strategy. Every

unit (class) of the software must be tested before

proceeding to the other stages of the development cycle.

SBST is a branch of Search Based Software Engineering

(SBSE). SBSE is an engineering approach in which

optimal or near optimal solutions are sought in a search

space of candidate solutions. The search is guided by a

fitness function that distinguishes between better and

worse solutions. SBSE is an optimization approach and

it is suitable for software testing since test case

generation is often seen as an optimization or search

problem. Since SBST techniques are heuristic by nature,

they must be empirically investigated in terms of how

costly and effective they are at reaching their test

98

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 6, June 2016

I. Papadhopulli and E. Meçe

objectives and whether they scale up to realistic

development artifacts. However, approaches to

empirically study SBST techniques have shown wide

variation in the literature. There exist several search-

based optimization methods used for test automation;

e.g. genetic algorithms, hill climbing, ant colony

optimization and simulated annealing, etc, but Genetic

algorithms (GAs) are among the most frequently applied

in test data generation.

GAs have several components which need to be defined

in order for the GA to be implemented. According to

[10], the component that affects mostly the results

obtained from the search is the fitness function. The

fitness function is a mathematical representation of the

coverage goal the search should achieve. There are

different coverage goals each of them aims at covering

certain parts of the unit under test. These different

coverage criteria verify the quality of a test suite. The

gold criterion is strong mutation, but today this criterion

it is mainly used by the research community for

evaluation of proposed techniques. The most used

criterion is branch coverage [11]. However achieving

high branch coverage (even 100%), for some classes is

not sufficient.

In object oriented programs the state of the object is a

factor that affects the execution of a method. This is

why the state of the object of the Class Under Test

(CUT), should evolve during the search in order to

discover hidden features of the class [12]. A test case

that puts the object in one or several new states is of

interest in the testing context. The scope of this paper is

to propose and evaluate a new fitness function, which

rewards the test cases according to branch coverage and

also according to the new states the object has taken

during the execution of the test.

The rest of this paper is organized as follows: In the

second section we explain in what unit testing of java

programs consists and in the third section we present an

overview of GAs. The fourth section is focused on

branch coverage and the fifth section presents the

proposed fitness function. The implementation of the

proposed fitness function is described in section six. The

seventh section gives details of the experimental setup

and in the eighth section the results achieved are

presented and discussed. We conclude finally with the

conclusions we have come preparing and accomplishing

this study.

2. UNIT TESTING FOR OBJECT

ORIENTED SOFTWARE

Software testing at the unit level (Java classes) consists

of three steps:

1. The design of test cases

2. The execution of these test cases

3. The determination of whether the output

produced is correct or not.

The second step is performed fully automatically using

frameworks like JUnit [2]. Automatically generating the

test oracle is still a challenge and there exists few

research publications regarding this topic [13], therefore

the third step is almost completely performed manually

by the testers. Regarding the first step, there exist a lot

of research effort for the generation of test cases

automatically. Due to the complexity and the diversity

of the programs under test this is still an open research

topic. Moreover test cases in object oriented unit testing

are not just a sequence of input values like in procedural

languages. According to [14], a unit test of a Java class

must accomplish the following four tasks:

1. Create an object of the class under test using one

of the available constructors.

2. Invoke a sequence of zero or more methods on

the created object.

3. Execute the method which is currently under test.

4. Examine the final state of the object to produce

the pass/fail result

Some parameters in method calls are objects themselves,

thus requiring further object constructions and as a

consequence task 1 and 2 must be repeated for each

parameter of object type.

The statements for Java unit test cases are:

1. Primitive statements: declaration of variables e.g.

int a = 15;

2. Constructor statements: construction objects of

any given class e.g. String s = new String(“Test”);

3. Method statements: calling the methods of any

given class e.g. char b = s.charAt(2);

4. Field statements: accessing the fields of any given

class e.g. int c = ob.size;

5. Assignments statements: assign values to the

fields of any given class e.g. ob.size = 17;

Since objects have a state, the results are affected by the

state of the object under test and of the object

parameters.

99

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 6, June 2016

I. Papadhopulli and E. Meçe

3. GENETIC ALGORITHMS

Genetic Algorithms (GAs) are inspired by natural

evolution. They were first introduced by Holland in

1975. Today GAs are used for optimization in testing

real life applications. The most important components in

GA are:

• representation of individuals: genotype (the

encoded representation of variables) to phenotype

(the set of variables themselves) mapping

• fitness function: a function that evaluates how

close an individual is to satisfy a given coverage

goal

• population: the set of all the individuals

(chromosomes) at a given time during the search

• parent selection mechanism: selecting the best

individuals to recombine in order to produce a

better generation

• crossover and mutation: the two types of

recombination used to produce new individuals

• replacement mechanism: a mechanism which

replace the individuals with the lowest fitness

function in order to produce a better population.

How does the GA work?

The space of potential solutions is searched in order to

find the best possible solution. This process is started

with a set of individuals (genotypes) which are

generated randomly from the whole population space

(phenotype space). New solutions are created by using

the crossover and mutation operators. The replacement

mechanism selects the individuals which will be

removed so that the population size does not exceed a

prescribed limit. The basis of selection is the fitness

function which assigns a quality measure to each

individual. According to the fitness function, the parent

selection mechanism evaluates the best candidates to be

parents in order to produce better individuals in the next

generation. It is the fitness function which affects the

search towards satisfying a given coverage criteria.

Usually the fitness function provides guidance which

leads to the satisfaction of the coverage criterion. For

each individual the fitness is computed according to the

mathematical formula which represents how close is a

candidate to satisfy a coverage goal, e.g. covering a

given branch in the unit under test. GAs are stochastic

search methods that could in principle run for ever. The

termination criterion is usually a search budget

parameter which is defined at the beginning of the

search and represents the maximum amount of time

available for that particular search.

4. COVERAGE CRITERIA

A. Types of Coverage Criteria

Automatic unit testing is guided by a structural coverage

criterion. There exist many coverage criteria in literature,

each of them aims at covering different components of a

CUT. Nevertheless, not all the criteria have the same

strength and can be fulfilled practically. Furthermore

some criteria are subsumed by other criteria. Below is a

list of coverage criteria for structural testing of Java

programs.

1. Line Coverage

2. Branch Coverage

3. Modified Condition Decision Coverage [21]

4. Mutation

5. Weak Mutation

6. Method coverage

7. Top-level Method Coverage

8. No-Exception Top Level Method Coverage

9. Direct Branch Coverage

10. Output Coverage

11. Exception Coverage

12. Path Coverage

13. Condition Coverage

14. Multiple Condition Coverage

15. Condition/Decision Coverage

Mutation criterion is considered the gold criterion in

research literature [15]. This criterion is difficult to

apply and computationally expensive and it is

practically only used for predicting suite quality by

researchers. Another option to achieve high quality test

cases with search based technique is to use a

combination of multiple criteria. [16] performed an

experiment to evaluate the effects of using multiple

criteria and concluded that:

 Given enough time the combination of all criteria

achieves higher mutation score than each

criterion separately (except Weak Mutation).

 Using all the criteria increases the test suite size

by more than 50% that the average test suite size

of each constituent criterion used separately.

 The next best criterion (after Weak Mutation) to

achieve high mutation scores is branch coverage.

The usage of multiple criteria increases the overall

coverage and mutation score with the cost of a

considerable increase in test suite length, so the usage of

the combination in practice will be not feasible, because

managing large test suites is difficult. A balance

between mutation score and average test suite size is

achieved with branch coverage criterion.

100

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 6, June 2016

I. Papadhopulli and E. Meçe

B. Branch Coverage

The most used criterion is branch coverage, but even

though it is an established default criterion in the

literature, it may produce weak test sets (mutation score

less than 30% [17]). For example consider the Stack

implementation in Figure 1.

 public class Stack {

 private int size = 0;

 private int st [] = new int [4];

 void push (int x){

 if (size < st.length)

 st[size++] = x;

 }

 int pop (){

 return st[size--];

 }

 }

Figure1: Example Stack implementation

 The class Stack is very simple (8 LOC, 2

attributes, 2 methods). Suppose the test suite generated

is the test suite given in Figure 2.

1. @Test

2. public void test0() {

3. Stack s0 =new Stack();

4. s0.push(1);

5. s0.push(0);

6. int int0 = s.pop();

7. assertEquals(0, int0);

8. s.push(0);

9. s.push(0);

10. s.push((-1916));

11. s.push((-1916));

12. }

Fig. 2. Test suite for class Stack

We used EclEmma [35] tool as a plugin in Eclipse to

measure branch coverage. The branch coverage obtained

by executing this test suite was 100%. There are 4

coverage goals in class Stack (2 methods and 2 branches

from the predicate in line 5).

Even though class Stack is very simple, and the branch

coverage obtained is 100%, the mutation score is

relatively low (29%). We added an assertion in the test

(line 7) and used the JUnit framework to run it in

Eclipse. The test passed. The tester may assume the

class is correct with 100% branch coverage and a

passing test.

Is branch coverage sufficient for this class?

Analyzing class Stack we notice the following errors:

 If method pop is called first and then is called

method push, an uncaught exception is thrown

(field size before calling push is -1).

 If method pop is called two times consequently

an uncaught exception is thrown (field size before

calling pop is -1).

 If method push is called four times consequently

and then is called method pop an uncaught

exception is thrown (field size before calling pop

is 4).

It is obvious that branch coverage is not sufficient for

class Stack!

Is there any possibility to improve the fitness function

for branch coverage in order to obtain a test suite with

higher quality?

Both of the methods are covered by the test generated,

but it is evident that the state of the object (the value of

field size) before calling them affects the results of the

tests. The same method called on different states of the

object behaves differently. This is why, a possibility to

improve the suite’s ability to detect errors, is to evolve

the state of the object during the search in order to put

the object in new states that probably can discover

interesting behaviors of the CUT. Since the search is

guided by the fitness function, then this function should

also consider the states reached by a test before

evaluating it.

5. THE PROPOSED FITNESS FUNCTION

Fitness functions are a fundamental part of any search

algorithm. They provide the means to evaluate

individuals, thus allowing a search to move towards

better individuals in the hope of finding a solution [18].

The approach considered here is to minimize the fitness

function during the search. The fitness function

proposed in this paper rewards the individuals based on

how close they are at covering a target (branch) and the

states they put the object under test. This function is a

mathematical equation depending on the:

• Approach level

• Branch Distance

• New states achieved

A. Approach Level

For each target, the approach level show how many of

the branch's control dependent nodes were not executed

by a particular input [20]. The fewer control dependent

nodes executed, the “further away” an input is from

executing the branch in control flow terms. The

approach level is the most used factor in the fitness

function for structural criteria, but the fitness landscape

contain plateaus because the search is unaware of how

101

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 6, June 2016

I. Papadhopulli and E. Meçe

close a test case was to traversing the desired edge of a

critical branching node.

B. Branch Distance

The branch distance is computed using the condition of

the decision statement at which the flow of control

diverted away from the current “target” branch. For

every operator the branch distance is calculated using

the formulas introduced by Tracey [19].

The approach level is more important that the branch

distance and as a consequence the branch distance

should be normalized at the fitness function formula.

This distance will be normalized at a value between 0.0

and 1.0. Value 0.0 means “true”; the desired branch has

been reached. Values close to 1.0 means that the

condition is far from being fulfilled. Intermediate values

guide slightly the search towards the accomplishment of

the condition (in order to remove plateaus in the fitness

landscape). The formula for branch distance in our

proposed fitness function is the formula introduced by

Arcuri [21].

 ()

BD is the branch distance before normalization and β is

1.

New States Achieved (NSA)

With the term state in this paper we refer to:

Definition 1. State: The set of the values of all the fields

in the CUT before calling a method + the method called.

For example, for the class Stack the two states:

 field size = 0 and filed st = !null, before calling

method push

 field size = 0 and filed st = !null, before calling

method pop are considered two different states and both

of them are interesting in the testing context.

The total number of states in the CUT is computed as a

product of all the possible combinations of the class

fields (declared non final) after abstraction (explained in

the next section), with the number of public methods.

The approach level is more important that the number of

new states achieved and as a consequence this factor

should be normalized at the fitness function formula.

The normalization formula is:

The greater the number of the new states achieved by a

test case the smaller this factor in the overall fitness.

The fitness function proposed considers the three factors

described above and is computed with the formula:

C. Abstract States

If we use the real values of the fields, the number of

states will be infinite. Moreover, not all the states are of

equal relevance during testing. For example, from the

testing prospective, calling method pop() of the class

Stack with field size = 1, is the same as calling method

pop with filed size = 2. On the other hand calling

method pop() with filed size = 0 in not the same, since

this state reveals an interesting behavior of the object

under test. Therefore, we use abstractions over the

values of the fields rather than the concrete values

themselves. We use a state abstraction function provided

by Dallmeier at al. [34]. The abstraction is performed

based on the three rules below:

 If the type of the field is concrete (int, double, long

etc), the value will be translated in three abstract

values: xi < 0, xi = 0 and xi > 0.

 If the type of the field is an object, the value will be

translated in two abstract values: xi = null dhe

xi null
 If the type of the field is Boolean, there is no need

to do translation, since there are only two values.

For example the combinations of the field values of

class Stack, after abstraction are those listed in Table 1.

Table 1: Combination of field values for class stack

 size st

state1 = 0 null
state2 > 0 null
state3 < 0 null

6. IMPLEMENTATION OF THE

PROPOSED FITNESS FUNCTION

The proposed fitness function was implemented in the

eToc [22] tool. eToc is a simple search based tool for

unit testing of Java programs. Is uses GA and branch

coverage criterion. This tool has been mentioned in

many research works and has been used as the basis for

the design of other tools. eToc is appropriate for the

scope used in this work. In the high level architecture of

this tool [22], the Branch Instrumentor module and the

Test Case Generator module need to be differently

102

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 6, June 2016

I. Papadhopulli and E. Meçe

implemented for the search to be guided by the proposed

fitness function. The new implementation of these

modules is described below.

6.1 The Intrumentor

The function of the instrumentor module is to transform

the source code of the CUT in order to provide

information about the executed branches, the branch

distance and the states achieved during execution. The

new statements added during instrumentation must not

change the behavior of the CUT. In order to obtain

information for the states reached by the object under

test, for each of the attributes (except those declared

final) of the CUT, a get method will be added. A static

analysis can be used to provide information about the

mutators and inspectors methods of a class [23][24], but

in this case a static whole-program analysis is required,

which is very expensive for this context used. Since it is

not the purpose here to obtain a behavioral model of the

CUT, the get methods are appropriate to be used as

inspectors for obtaining the state of the object because

these methods:

 Return the value of an attribute

 Do not take parameters

 Do not have any side effects in the execution of

the program.

Based on the state definition given in section 5.C, the

get methods should be called before the execution of

each method of the CUT, so during instrumentation the

statements calling the get methods are added before the

existing statements of each method. The concrete values

are translated in abstract values as described in section

5.D. Then the states reached by a test case are saved in a

LinkedList and consequently during fitness evaluation

the new states achieved by a test case can obtained.

 public class Stack {

 private int size = 0;

 private int st [] = new int [4];

 void push (int x){

 returnState();

 if (size < st.length)

 st[size++] = x;

 }

 int pop (){

 returnState();

 return st[size --];

 }

 public int getsize1(){

 return size;

 }

 public Object getst1(){

 return st;

 }

 public void returnState (){

 reachedStates.add(String.valueOf(getsiz

e1()+" "+getst1());

 }

 static java.util.List reachedStates;

 public static void newReachedStates()

 {

 reachedStates = new

java.util.LinkedList();

 }

}

Fig. 3. Class Stack after instrumentation for the new ststes achieved

6.2 The Test Case Generator

The instrumented version of the CUT is executed

repeatedly with the scope to cover a specified target

(branch of the CUT). The state lists resulting after each

execution are compared with the state lists of the test

cases that make up the population. The new states

reached by an individual are used to compute part of its

fitness.

This module is also responsible for the minimization of

the generated test suite. Normally during minimization

the tests that do not cover any target that is not covered

by any other test are omitted from the test suite. Taking

into consideration that a test case that reaches one or

more new states is important in the testing context,

before removing a test case because it does not cover

any new target, it will be reconsidered regarding the

states it puts the object under test in. The test cases

which contain unreached states in their state lists, will be

part of the final test suite. The proposed minimization

has the advantage that it probably increases the number

of tests in the generated test suite and as a consequence

it also increases the length of the test suite. On the other

side the usage of the proposed fitness function is

expected to increase the capability of the test suite to

detect errors. An experimental evaluation of the new

fitness function is presented in the next section.

103

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 6, June 2016

I. Papadhopulli and E. Meçe

Table 2: Characteristics of the Classes Selected for the Experiments: Name of the Project, LOC, Number of Public Methods, Number of Branches,

Number of Mutants, Number of Non-Final Fields, Cyclomatic Complexity, Project URL

7. EXPERIMENTAL EVALUATION

In this work we aim to answer the following research

questions:

• RQ1: How does the usage of the proposed

fitness function affect the branch coverage?

• RQ2: How does the usage of the proposed

fitness function affect the mutation score of the

suite?

• RQ3: How does the usage of the proposed

fitness function affect the number of suite’s test

cases and their size?

7.1 System Characteristics

For the experiments we used a desktop computer

running Linux 32 bit Operating System, 1 GB of main

memory and a Intel Core 2 Duo CPU E7400 2.8GHz x 2

Processor.

7.2 Subject Selection

Selecting the classes under test is very important since

this selection affects the results of the experiments. We

chose 7 open source projects and selected randomly 23

classes from them. Also, the class Stack discussed

throughout this paper was used as a subject for the

experiments. To obtain comprehensive results, the

evaluation must be done to real and not simple subjects.

Also these subjects should not have any common

characteristics which affect the obtained results. The

characteristics of the 24 classes are listed in Table 2.

The information about LOC (without comments and

empty lines) and cyclomatic complexity is obtained

using Metrics 1.3.6 [25], as a plugin in Eclipse. As can

be noted from Table 2, the classes have very different

characteristics and complexity.

Project Class LOC Branches Mutants Non-
final

Fields

Public
Methods

Cyclomatic
Complexity

URL e projektit

 Staku 12 4 22 2 2 1.5

Commons CLI

Option 155 131 140 9 42 1.52 https://commons.apach

e.org

TypeHandler 124 28 28 0 9 2.66

AlreadySelectedExcept

ion

26 4 1 2 2 1

OptionGroup 86 21 19 2 8 1.875

Math4J

Rational 61 36 161 2 19 1.526 https://sourceforge.net/

projects/math4j

ExponentialFunction 40 11 31 1 9 1

ArrayUtil 320 167 1769 0 36 3.48

PolyFunction 245 100 827 2 12 3.63

Complex 102 24 682 2 20 1.091

jdk (java.util
v.1.8.0)

StringTokenizer 313 78 434 7 6 3.12

Genetic
Algorithm in

Java

GAAlgorithm 65 14 6 6 8 2 https://sourceforge.net/
projects/gaj

Genome 14 9 21 3 4 1.4

Population 62 13 44 4 11 1.08

ObjectExplore
r4J

ExplorerFrame 158 26 74 8 9 1.44 https://sourceforge.net/
projects/objectexplorer

ObjectViewManager 114 41 41 8 17 1.571

NewzGrabber

DirectoryDialog 177 47 155 16 13 2.235 https://sourceforge.net/

projects/newsgrabber

NewsFactory 121 45 88 4 7 4

SongInfo 55 12 59 3 4 2

BatchJob 28 11 29 8 10 1.27

StringSorter 63 12 47 1 4 2.2

OptionsPanel 363 75 214 15 4 9.8

Jipa

Label 18 11 42 3 4 1.8 https://sourceforge.net/
projects/jipa

Variable 40 23 87 3 4 2.1

Total 276

2
943 5021 111 264

104

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 6, June 2016

I. Papadhopulli and E. Meçe

Five of the projects were downloaded from SourceForge

[26] which is today the greatest open source repository

(more than 300,000 projects and two million of users).

One project was downloaded from the Apache Software

Foundation [27] which exists from 1999 and has more

than 350 projects (including Apache HTTP Server).

Class StringTokenizer was taken from the java.util

package which is part of jdk 1.8.0. This package has

been used by several studies for evaluation of automatic

test case generation techniques.

7.3 Parameters of GA

Defining the parameters of GAs to obtain the optimal

results is difficult and a lot of research effort is

dedicated to this topic [28][29]. Therefore we let the

parameters of the GA to their default values [22]. The

values of three of the most relevant parameters are listed

in Table 3. Regarding the search budget, it was

determined depending on the experiment and will be

shown next for each experiment.

Table 3: Parameters of GA

Parameter Value

Population Size 10

Search Budget 600s

Maximal number of generations/target 10

7.4 Experiment

For each of the classes we run eToc with the following

configurations:

1. Original Fitness (OF) function with search

budget of 2 min

2. Proposed Fitness (PF) function with search

budget of 2 min

3. Original Fitness (OF) function with search

budget of 10 min

4. Proposed Fitness (PF) function with search

budget of 2 min

To overcome the randomness of the genetic algorithms

each experiment was repeated 5 times.

The results of the experiments (average of all runs) are

presented in Table 4.

Table 4: Branch Coverage, Mutation Score, Number of Tests, Length of Test Suite for Each Configuration, Average of All Runs for Each Cut

Class BC

with

OF (2

min)

BC with

PF (2

min)

BC

with

OF (10

min)

BC

with

PF (10

min)

MS

with OF

(2 min)

MS

with

PF (2

min)

MS

with

OF (10

min)

MS

with

PF (2

min)

No.

test

with

OF

Test

length

with

OF

No.

test

with

PF

Test

length

with

PF

Staku 100 100 100 100 29 72 29 72 2 8 4 15

Option 69 69 69 69 41 49 41 49 62 147 71 166

TypeHandler 75 75 75 75 46 46 46 46 12 24 12 24

AlreadySelectedException 100 100 100 100 100 100 100 100 3 5 3 5

OptionGroup 100 100 100 100 84 89 84 89 8 27 7 35

Rational 94 94 94 94 75 79 75 79 12 24 12 31

ExponentialFunction 100 100 100 100 60 55 60 60 8 16 7 15

ArrayUtil 100 99 100 100 9 9 9 9 64 141 64 141

PolyFunction - - 85 87 - - 31 38 27 89 30 98

Complex 100 100 100 100 34 37 34 37 13 27 12 31

StringTokenizer 65 65 69 69 15 21 19 23 8 18 16 33

GAAlgorithm 93 93 93 93 33 33 33 50 10 21 8 19

Genome 44 44 55 55 0 4 0 4 3 6 4 10

Population 92 92 100 100 32 32 32 32 11 29 11 29

ExplorerFrame 8 15 8 15 0 3 0 3 2 2 2 3

ObjectViewManager 54 54 54 54 17 24 17 24 2 3 2 3

DirectoryDialog 6 6 6 6 0 0 0 0 5 11 5 11

NewsFactory - - - - - - - - - - - -

SongInfo 50 50 50 50 22 27 24 27 5 12 8 19

105

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 6, June 2016

I. Papadhopulli and E. Meçe

BatchJob 100 100 100 100 62 69 62 69 10 20 9 22

StringSorter 100 100 100 100 17 17 17 17 6 17 6 17

OptionPanel - - 37 37 - - 3 9 7 21 8 19

Label 100 100 100 100 55 55 55 55 4 16 4 16

Variable 100 100 100 100 55 56 56 59 6 9 9 19

Average 60.5 69 74.8 75.2 37.9 42.7 35.9 41.5 - - - -

Total - - - - - - - - 290 693 314 781

8. RESULTS AND DISCUSSION

• RQ1: How does the usage of the proposed

fitness function affect the branch coverage?

The branch coverage was measured with EclEmma. For

both functions the average branch coverage is greater

when the search budget is 10 min. This result was

expected since the individuals improve during the search

and more time results in better solutions.

In order to do the best comparison of the approaches we

focus on the case with search budget of 10 min in this

section, since for the scope of the experiment, it is not

appropriate to compare results affected by the limited

search time.

The difference between the average branch coverage is

inconsiderable (0.4%) when a search budget of 10 min is

used. This difference may be due to the randomness of

the results achieved by the search. Since the approach

presented in this work does not change the targets to

cover, the almost equal coverage was expected. For the

class ExplorerFrame, there is an increase of 7% in the

coverage achieved by the proposed approach. Even

though the targets are identical, the proposed function

rewards the individuals that reach more new states and

therefore the test cases after minimization may be

different and more complex. So, this increase probably

is the effect of indirect coverage.

Only in the case of class ArrayUtil there was a decrease

of 1% in the coverage achieved, with budget 2 min, but

more likely it is due to the randomness of the search. For

the class NewsFactory the search failed to produce

results for both approaches. We changed the parameters

of the GA, but even for a population of 20, or 30

individuals, no results were generated. It is not the scope

of this work to investigate the reasons why this

happened.

RQ1: In our experiments, there is no difference in

the average branch coverage achieved between the

usage of the original fitness function and the

proposed fitness function.

• RQ2: How does the usage of the proposed

fitness function affect the mutation score of the

suite?

Since mutation score is the measure used in the

strongest criterion (Mutation Coverage), here we have

used it to measure the quality of the generated test suite.

Computing the mutation score for a test suite requires

determining, for every mutant, whether the test suite

succeeds or fails when run on the mutant. In the worst

case each test must be run on each mutant. For each of

the classes the mutants were generated using as a plugin

in Eclipse the tool MuClipse v1.3 [30]. MuClipse

generates mutants using the traditional operators and the

operators in the class level [31]. The number of

generated mutants for each class is given in Table 2.

Even classes with a small number of LOC can have

many mutants (e.g. class Stack has 22 mutants).

Assertions were inserted manually to the tests generated,

so that these cases can be used by MuClipse. Then, the

generated tests were executed with JUnit against all the

mutants and the presence of failures shows that the tests

were able to kill the mutants.

The results of the mutation scores of each class for all

the configurations are given in Table 4.

The mutation scores achieved by both of the fitness

functions are far from the optimal value (100%). Almost

this range of mutation scores is also obtained from other

studies [32]. The main reasons of these low scores are:

 the targets to cover are the branches and not

the mutants

 the presence of equivalent mutants (behave the

same as the original program) which cannot be

killed.

Nevertheless, despite the relatively low mutation scores,

our interest is focused on the difference between the

scores achieved by the original function against the

proposed function.

For 6 classes (6/23 = 26%) there is an improvement in

the mutation score achieved when using a search budget

of 10 min against a search budget of 2 min.

106

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 6, June 2016

I. Papadhopulli and E. Meçe

For the same reasons mentioned in the discussion of

RQ1, to answer RQ2 we are focusing mainly at the

results achieved with a search budget of 10 min. The

average mutation score reached by the original function

is 35.9%, whereas the mutation score reached by the

proposed function is 41.5%, thus a difference of 5.6%.

The improvement is 5.6/35.9 = 15.6%. For 15 classes

out of 23 (15/23 = 65%), there is an improvement in the

mutation score achieved by the proposed function; for

the remaining 8 classes (8/23 = 35%), the scores

achieved are identical. There is no class where using the

proposed function results in a lower mutation score.

Even though we are aware that the results depend on the

CUT (despite the fact that CUT chosen have different

characteristics), the results obtained are very promising.

RQ2: In our experiments, the usage of the proposed

fitness function results in a relative increase of 15.6%

in the average mutation score achieved against the

original fitness function.

• RQ3: How does the usage of the proposed

fitness function affect the number of suite’s test

cases and their size?

Automatically generated JUnit tests need to be manually

checked in order to detect faults because automatic

oracle generation is not possible today. This is the

reason why not only the achieved coverage of the

generated test suite is important, but the size of the test

suite is of the same importance [33].

Here we refer to the size of a test suite as the number of

statements after the minimization phase (without

assertions).

Only the results achieved with a search budget of 10

min, are shown in Table 4, because in answering RQ3

we are interested in the number of tests generated and

their size in the “worst case”. The minimization phase

does not depend on the search budget, so the results with

search budget of 10 min, subsume the scenario with a

search budget of 2 min. The LOC of the generated suite

was obtained with the tool Metrics 1.3.6.

There is an increase of 314 – 290 = 24 tests in the total

number of test generated, or a relative increase of

24/290 = 8.2%. This increase is acceptable, although the

number of tests in the test suite is not relevant in respect

to the size of the test suite, because having many short

size tests is not a problem for the tester who is detecting

faults.

Regarding the size of the test suite, we can see from the

results in Table 4, that using the proposed fitness

function results in an average test suite size of 33.9

(781/23) statements. The relative increase is (33.9 –

30.1) / 30.1 = 12.6%. For 8 of the classes (34%), there is

no change in the average test suite size. Regarding

classes ExponentialFunction and GAAlgorithm (8.7% of

the classes), there is a decrease in the average test suite

size, although there is no decrease either in branch

coverage or mutation score. These results are explained

with the appearance of indirect coverage [36].

 ArrayUtil is the class with the greatest test suite size

because of the large number of branches (167).

 The average increase in test suite size with the usage

of the proposed function is the consequence of two

reasons:

 During the minimization phase the test cases that

do not cover any target, but put the object under

test in new states, are added in the minimized test

suite (as explained in Section 6)

 Two different fitness functions probably will

generate different test suites with different

number of statements (not necessarily a larger

number).

RQ3: In our experiments, the usage of the proposed

fitness function results in a relative increase of 8.2%

in the average number of test cases and 12.6% in the

average test suite size achieved against the original

fitness function.

9. CONCLUSIONS

This paper concerns the fitness function used to guide

the search during automatic unit test generation of Java

classes. The branch coverage criterion is easy to

implement but can produce weak test sets. Test cases

that put the object under test in new states discover

hidden behaviors and consequently are relevant in the

testing context. Targeting all the states during the search

is impossible due to the fact that some of them are

infeasible. In this article we presented a new fitness

function that takes into consideration the states reached

during the execution of a test case. The implementation

of this fitness function is very simple since the targets to

cover remain the branches, but the state evolve during

the search and the minimization phase the tests that

reach one or more new states are not removed even

though these tests does not reach any uncovered

branches. The usage of the proposed fitness function

does not decrease the branch coverage and results in a

relative increase of 15.6% in the achieved average

mutation score with the cost of a relative increase of

12.6% in the average test suite size. The results are

promising but since the subjects under test are very

different further evaluation of the proposed approach

needs to be performed.

107

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 6, June 2016

I. Papadhopulli and E. Meçe

REFERENCES

[1] NIST (National Institute of Standards and

Technology): The Economic Impacts of Inadequate

Infrastructure for Software Testing, Report 7007.011,

[2] Y. Cheon and G. T. Leavens. A simple and practical

approach to unit testing: The JML and JUnit way.

Technical Report 01-12, Department of Computer

Science, Iowa State University, Nov. 2001.

[3] C. Cadar, K. Sen, “Symbolic Execution for Software

Testing: Three Decades Later”. Communications of

ACM, pages 82-90, 2013

[4] C. Pacheco, S. Lahiri, M. Ernst, “Feedback-directed

Random Test Generation”. In Proceedings of

International Conference in Software Engineering

(ICSE) 2007

[5] G. Fraser, A. Arcuri, “EvoSuite at the SBST 2015 Tool

Competition”. In Proceedings of International

Conference in Software Engineering (ICSE) 2015

[6] T. Tsuji, A. Akinyele, “Evaluation of AgitarOne”.

Analysis of Software Artifacts Final Project Report

April 24, 2007

[7] G. Fraser, P. McMinn, A. Arcuri, M. Staats, “Does

Automated Unit Test Generation Really Help Software

Testers? A Controlled Empirical Study”. ACM

Transactions on Software Engineering and

Methodology, 2015

[8] S. Shamshiri, R. Just, J. Rojas, G. Fraser, P. McMinn,

A. Arcuri, “Do Automatically Generated Unit Tests

Find Real Faults? An Empirical Study of Effectiveness

and Challenges” In Proceedings of the 30th

IEEE/ACM International Conference on Automated

Software Engineering (ASE), 2015

[9] F. Gross, G. Fraser, A. Zeller, “Search-based system

testing: high coverage, no false alarms”. In Proceedings

of International Symposium on Software Testing and

Analysis (ISSTA), 2012.

[10] P. McMinn, “Search-based Software Test Data

Generation: A Survey”, Software Testing, Verification

and Reliability, pp. 105-156, June 2004.

[11] K. Lakhotia, P. McMinnb, M. Harman, “An empirical

investigation into branch coverage for C programs

using CUTE and AUSTIN”. Journal of Systems and

Software, 2010

[12] M. Mirazz, “Evolutionary Testing of Stateful Systems:

a Holistic Approach”. PhD thesis, University of

Torino, 2010

[13] G. Fraser, A. Zeller, “Mutation-Driven Generation of

Unit Tests and Oracles,” IEEE Transactions on

Software Engineering, 2012.

[14] P. Tonella, “Search-Based Test Case Generation”,

TAROT Testing School Presenetation, 2013

[15] G. Fraser, A. Arcuri, “Achieving Scalable Mutation-

based Generation of Whole Test Suites”. Empirical

Software Engineering 2014.

[16] I. Papadhopulli, E. Meçe “Coverage Criteria for Search

Based Automatic Unit Testing of Java Programs”,

International Journal of Computer Science and

Software Engineering (IJCSSE), Volume 4, Issue 10,

October 2015

[17] J. Miguel Rojas, J. Campos1, M. Vivanti, G. Fraser, A.

Arcuri, “Combining Multiple Coverage Criteria in

Search-Based Unit Test Generation” in Proceedings of

the 26th IEEE/ACM International Conference on

Automated Software Engineering (ASE), pp. 436-439,

2011

[18] K. Lakhotia, M. Harman, H. Gross, “AUSTIN: A Tool

for Search Based Software Testing for the C Language

and Its Evaluation on Deployed Automotive Systems”.

International Symposium on SBSE, 2010

[19] N. Tracey. “A Search-Based Automated Test-Data

Generation Framework For Safety-Critical Software”.

PhD thesis, University of York, 2000

[20] J. Wegener, A. Baresel, H. Sthamer. “Evolutionary

Test Environment for Automatic Structural Testing”.

Information and Software Technology Special Issue on

Software Engineering using Metaheuristic Innovative

Algorithms, 43(14):841{854, December 2001.

[21] A. Arcuri, “It Does Matter How You Normalise the

Branch Distance in Search Based Software Testing”.

Third International Conference on Software Testing,

Verification and Validation, 2010”

[22] P. Tonella, “Evolutionary Testing of Classes”. In

Proceedings of International Symposium on Software

Testing and Analysis (ISSTA) 2004

[23] A. Rountev, “Precise identification of side-effect-free

methods in java”. 20th IEEE International Conference

on Software Maintenance (ICSM ’04), pages 82–91,

2004.

[24] A. Salcianu, M. Rinard, “Purity and side effect analysis

for java programs”. In Proceedings of the 6th

International Conference on Verification, Model

Checking and Abstract Interpretation, pages 199–215,

January 2005.

[25] http://metrics.sourceforge.net/

[26] http:/.sourceforge.net/

[27] http://www.apache.org/

[28] A. Aleti, L. Grunske, “Test Data Generation with a

Kalman Filter-Based Adaptive Genetic Algorithm”.

Journal of Systems and Software, 2014.

[29] A. E. Eiben, S. K. Smit, “Parameter tuning for

configuring and analyzing evolutionary algorithms”.

Journal: Swarm and Evolutionary Cmputation, pages

19-31, 2011.

[30] http://muclipse.sourceforge.net/

[31] Y. Ma, J. Ouffut, “Description of Class Mutation

Mutation Operators for Java”, August 2014

[32] D. Le, M. Alipour, R. Gopinath, and A. Groce,

“MuCheck: An Extensible Tool for Mutation Testing

of Haskell Programs”. In Proc. of the International

Symposium on Software Testing and Analysis, 2014.

[33] G. Fraser, A. Arcuri, “Handling test length bloat”. In

Proceedings of ICST, 2013.

[34] V. Dallmeier, C. Lindig, A. Vasilowski, “Mining

Object Behaviour with ADABU”. In Proceedings of

the International Workshop on Dynamic Systems

Analysis, 2006

[35] http://www.eclemma.org/

[36] I. Papadhopulli, N. Frasheri, “Today’s Challenges of

Symbolic Execution and Search-Based for Automated

Structural Testing”, In Proceedings of ICTIC, 2015.

	6.1 The Intrumentor
	6.2 The Test Case Generator
	7.1 System Characteristics
	7.2 Subject Selection
	7.3 Parameters of GA
	7.4 Experiment

