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ABSTRACT 
Genetic Algorithms are among the most efficient search-based 

techniques to automatically generate unit test cases today. The 

search is guided by a fitness function which evaluates how 

close an individual is to satisfy a given coverage goal. There 

exists several coverage criteria but the default criterion today 

is branch coverage. Nevertheless achieving high or full branch 

coverage does not imply that the generated test suite has good 

quality. In object oriented programs the state of the object 

affects its behavior. Thereupon, test cases that put the object 

under test, in new states are of interest in the testing context. In 

this article we propose a new fitness function which takes into 

consideration three factors for evaluation: the approach level, 

the branch distance and the new states reached by a test case. 

The coverage targets are still the branches, but during the 

search, the state of the object under test evolves with the scope 

to produce individuals that discover interesting features of the 

class and as a consequence can discover errors. We 

implemented this fitness function in the eToc tool. In our 

experiments the usage of the proposed fitness function towards 

the original fitness function results in a relative increase of 

15.6% in the achieved average mutation score with the cost of 

a relative increase of 12.6% in the average test suite size. 

 

Keywords: Structural Testing, Test Case Generation, Search 

Based Software Testing, Fitness Function, Object State, 

Coverage Criteria, Mutation Score. 

1. INTRODUCTION 

Due to the fact that the influence of software in all areas 

has grown rapidly in the past 40 years, the software has 

become very complex and also its reliability is 

fundamental. All the software development phases have 

been adapted to produce these complex software 

systems, but especially the testing phase is of critical 

importance and testing thoroughly today’s software 

systems is still a challenge. According to a study [1] 

conducted by the National Institute of Standard & 

Technology, approximately 80% of the development 

cost is spent on identifying and correcting defects. It is a 

well-known fact that it is a lot more expensive to correct 

defects that are detected during later system operation. 

Considering past experiences, inadequate and ineffective 

testing can result in social problems and 

human/financial losses. In order to improve the testing 

infrastructure, several efforts have been made to 

automate this process. 

In the unit testing level, there are three approaches 

towards automation: random testing, static analysis 

(Symbolic Execution [3]) and metaheuristic search. A 

considerable number of tools have been developed 

based on these approaches; eg. RANDOOP [4], 

EvoSuite [5], AgitarOne [6]. Nevertheless, the 

effectiveness of these tools is still not completely proved, 

because the results obtained from the experiments 

depend on the subjects under test. Usually, a coverage 

criteria is used to evaluate these tools, but achieving a 

high degree of code coverage does not imply that a test 

is actually effective at detecting faults [7]. According to 

[8], today there is no tool to find more than 40.6% of 

faults. 

This article is focused on structural testing at the unit 

level of Java programs using Search-Based Software 

Testing (SBST) [9]. According to [10], SBST has been 

used to automate the testing process in several areas 

including the coverage of specific program structures, as 

part of a structural, or white-box testing strategy. Every 

unit (class) of the software must be tested before 

proceeding to the other stages of the development cycle. 

SBST is a branch of Search Based Software Engineering 

(SBSE). SBSE is an engineering approach in which 

optimal or near optimal solutions are sought in a search 

space of candidate solutions. The search is guided by a 

fitness function that distinguishes between better and 

worse solutions. SBSE is an optimization approach and 

it is suitable for software testing since test case 

generation is often seen as an optimization or search 

problem. Since SBST techniques are heuristic by nature, 

they must be empirically investigated in terms of how 

costly and effective they are at reaching their test 
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objectives and whether they scale up to realistic 

development artifacts. However, approaches to 

empirically study SBST techniques have shown wide 

variation in the literature. There exist several search-

based optimization methods used for test automation; 

e.g. genetic algorithms, hill climbing, ant colony 

optimization and simulated annealing, etc, but Genetic 

algorithms (GAs) are among the most frequently applied 

in test data generation. 

GAs have several components which need to be defined 

in order for the GA to be implemented. According to 

[10], the component that affects mostly the results 

obtained from the search is the fitness function. The 

fitness function is a mathematical representation of the 

coverage goal the search should achieve. There are 

different coverage goals each of them aims at covering 

certain parts of the unit under test. These different 

coverage criteria verify the quality of a test suite. The 

gold criterion is strong mutation, but today this criterion 

it is mainly used by the research community for 

evaluation of proposed techniques. The most used 

criterion is branch coverage [11]. However achieving 

high branch coverage (even 100%), for some classes is 

not sufficient. 

In object oriented programs the state of the object is a 

factor that affects the execution of a method. This is 

why the state of the object of the Class Under Test 

(CUT), should evolve during the search in order to 

discover hidden features of the class [12]. A test case 

that puts the object in one or several new states is of 

interest in the testing context. The scope of this paper is 

to propose and evaluate a new fitness function, which 

rewards the test cases according to branch coverage and 

also according to the new states the object has taken 

during the execution of the test. 

The rest of this paper is organized as follows: In the 

second section we explain in what unit testing of java 

programs consists and in the third section we present an 

overview of GAs. The fourth section is focused on 

branch coverage and the fifth section presents the 

proposed fitness function. The implementation of the 

proposed fitness function is described in section six. The 

seventh section gives details of the experimental setup 

and in the eighth section the results achieved are 

presented and discussed. We conclude finally with the 

conclusions we have come preparing and accomplishing 

this study. 

 

 

 

2. UNIT TESTING FOR OBJECT 

ORIENTED SOFTWARE 

 

Software testing at the unit level (Java classes) consists 

of three steps: 
 

1. The design of test cases 

2. The execution of these test cases 

3. The determination of whether the output 

produced is correct or not. 

 

The second step is performed fully automatically using 

frameworks like JUnit [2]. Automatically generating the 

test oracle is still a challenge and there exists few 

research publications regarding this topic [13], therefore 

the third step is almost completely performed manually 

by the testers. Regarding the first step, there exist a lot 

of research effort for the generation of test cases 

automatically. Due to the complexity and the diversity 

of the programs under test this is still an open research 

topic. Moreover test cases in object oriented unit testing 

are not just a sequence of input values like in procedural 

languages. According to [14], a unit test of a Java class 

must accomplish the following four tasks: 

 

1. Create an object of the class under test using one 

of the available constructors. 

2. Invoke a sequence of zero or more methods on 

the created object. 

3. Execute the method which is currently under test. 

4. Examine the final state of the object to produce 

the pass/fail result 

Some parameters in method calls are objects themselves, 

thus requiring further object constructions and as a 

consequence task 1 and 2 must be repeated for each 

parameter of object type.  

The statements for Java unit test cases are: 
 

1. Primitive statements: declaration of variables e.g. 

int a = 15; 

2. Constructor statements: construction objects of 

any given class e.g. String s = new String(“Test”); 

3. Method statements: calling the methods of any 

given class e.g. char b = s.charAt(2); 

4. Field statements: accessing the fields of any given 

class e.g. int c = ob.size; 

5. Assignments statements: assign values to the 

fields of any given class e.g. ob.size = 17; 
 

Since objects have a state, the results are affected by the 

state of the object under test and of the object 

parameters. 
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3. GENETIC ALGORITHMS 

Genetic Algorithms (GAs) are inspired by natural 

evolution. They were first introduced by Holland in 

1975. Today GAs are used for optimization in testing 

real life applications. The most important components in 

GA are:  
 

• representation of individuals: genotype (the 

encoded representation of variables) to phenotype 

(the set of variables themselves) mapping 

• fitness function: a function that evaluates how 

close an individual is to satisfy a given coverage 

goal 

• population: the set of all the individuals 

(chromosomes) at a given time during the search 

• parent selection mechanism: selecting the best 

individuals to recombine in order to produce a 

better generation 

• crossover and mutation: the two types of 

recombination used to produce new individuals 

• replacement mechanism: a mechanism which 

replace the individuals with the lowest fitness 

function in order to produce a better population. 

 

How does the GA work? 
 

The space of potential solutions is searched in order to 

find the best possible solution. This process is started 

with a set of individuals (genotypes) which are 

generated randomly from the whole population space 

(phenotype space). New solutions are created by using 

the crossover and mutation operators. The replacement 

mechanism selects the individuals which will be 

removed so that the population size does not exceed a 

prescribed limit. The basis of selection is the fitness 

function which assigns a quality measure to each 

individual. According to the fitness function, the parent 

selection mechanism evaluates the best candidates to be 

parents in order to produce better individuals in the next 

generation. It is the fitness function which affects the 

search towards satisfying a given coverage criteria. 

Usually the fitness function provides guidance which 

leads to the satisfaction of the coverage criterion. For 

each individual the fitness is computed according to the 

mathematical formula which represents how close is a 

candidate to satisfy a coverage goal, e.g. covering a 

given branch in the unit under test. GAs are stochastic 

search methods that could in principle run for ever. The 

termination criterion is usually a search budget 

parameter which is defined at the beginning of the 

search and represents the maximum amount of time 

available for that particular search. 

4. COVERAGE CRITERIA 

A. Types of Coverage Criteria 

Automatic unit testing is guided by a structural coverage 

criterion. There exist many coverage criteria in literature, 

each of them aims at covering different components of a 

CUT. Nevertheless, not all the criteria have the same 

strength and can be fulfilled practically. Furthermore 

some criteria are subsumed by other criteria. Below is a 

list of coverage criteria for structural testing of Java 

programs. 

 

1. Line Coverage 

2. Branch Coverage 

3. Modified Condition Decision Coverage [21]  

4. Mutation  

5. Weak Mutation 

6. Method coverage  

7. Top-level Method Coverage 

8. No-Exception Top Level Method Coverage 

9. Direct Branch Coverage 

10. Output Coverage 

11. Exception Coverage 

12. Path Coverage  

13. Condition Coverage 

14. Multiple Condition Coverage 

15. Condition/Decision Coverage 

 

Mutation criterion is considered the gold criterion in 

research literature [15]. This criterion is difficult to 

apply and computationally expensive and it is 

practically only used for predicting suite quality by 

researchers. Another option to achieve high quality test 

cases with search based technique is to use a 

combination of multiple criteria. [16] performed an 

experiment to evaluate the effects of using multiple 

criteria and concluded that: 

 

 Given enough time the combination of all criteria 

achieves higher mutation score than each 

criterion separately (except Weak Mutation). 

 Using all the criteria increases the test suite size 

by more than 50% that the average test suite size 

of each constituent criterion used separately. 

 The next best criterion (after Weak Mutation) to 

achieve high mutation scores is branch coverage. 

The usage of multiple criteria increases the overall 

coverage and mutation score with the cost of a 

considerable increase in test suite length, so the usage of 

the combination in practice will be not feasible, because 

managing large test suites is difficult. A balance 

between mutation score and average test suite size is 

achieved with branch coverage criterion. 
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B. Branch Coverage 

The most used criterion is branch coverage, but even 

though it is an established default criterion in the 

literature, it may produce weak test sets (mutation score 

less than 30% [17]). For example consider the Stack 

implementation in Figure 1. 

 

   public class Stack { 

  private int size = 0; 

  private int st [] = new int [4]; 

  void push (int x){ 

   if (size < st.length) 

    st[size++] = x; 

  } 

  int pop (){ 

   return st[size--]; 

   } 

   } 

Figure1: Example Stack implementation 

 

      The class Stack is very simple (8 LOC, 2 

attributes, 2 methods). Suppose the test suite generated 

is the test suite given in Figure 2. 

 

1. @Test 

2. public void test0()  { 

3. Stack s0 =new Stack(); 

4. s0.push(1); 

5. s0.push(0); 

6. int int0 = s.pop(); 

7. assertEquals(0, int0); 

8. s.push(0); 

9. s.push(0); 

10. s.push((-1916)); 

11. s.push((-1916)); 

12. } 

Fig. 2. Test suite for class Stack 

 

We used EclEmma [35] tool as a plugin in Eclipse to 

measure branch coverage. The branch coverage obtained 

by executing this test suite was 100%. There are 4 

coverage goals in class Stack (2 methods and 2 branches 

from the predicate in line 5). 

Even though class Stack is very simple, and the branch 

coverage obtained is 100%, the mutation score is 

relatively low (29%). We added an assertion in the test 

(line 7) and used the JUnit framework to run it in 

Eclipse. The test passed. The tester may assume the 

class is correct with 100% branch coverage and a 

passing test.  

Is branch coverage sufficient for this class? 

Analyzing class Stack we notice the following errors: 

 

 If method pop is called first and then is called 

method push, an uncaught exception is thrown 

(field size before calling push is -1). 

 If method pop is called two times consequently 

an uncaught exception is thrown (field size before 

calling pop is -1). 

 If method push is called four times consequently 

and then is called method pop an uncaught 

exception is thrown (field size before calling pop 

is 4). 

It is obvious that branch coverage is not sufficient for 

class Stack! 

Is there any possibility to improve the fitness function 

for branch coverage in order to obtain a test suite with 

higher quality? 

Both of the methods are covered by the test generated, 

but it is evident that the state of the object (the value of 

field size) before calling them affects the results of the 

tests. The same method called on different states of the 

object behaves differently. This is why, a possibility to 

improve the suite’s ability to detect errors, is to evolve 

the state of the object during the search in order to put 

the object in new states that probably can discover 

interesting behaviors of the CUT. Since the search is 

guided by the fitness function, then this function should 

also consider the states reached by a test before 

evaluating it. 

5. THE PROPOSED FITNESS FUNCTION 

Fitness functions are a fundamental part of any search 

algorithm. They provide the means to evaluate 

individuals, thus allowing a search to move towards 

better individuals in the hope of finding a solution [18]. 

The approach considered here is to minimize the fitness 

function during the search. The fitness function 

proposed in this paper rewards the individuals based on 

how close they are at covering a target (branch) and the 

states they put the object under test. This function is a 

mathematical equation depending on the:  

 

• Approach level 

• Branch Distance 

• New states achieved 

 

A. Approach Level 

For each target, the approach level show how many of 

the branch's control dependent nodes were not executed 

by a particular input [20]. The fewer control dependent 

nodes executed, the “further away” an input is from 

executing the branch in control flow terms. The 

approach level is the most used factor in the fitness 

function for structural criteria, but the fitness landscape 

contain plateaus because the search is unaware of how 
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close a test case was to traversing the desired edge of a 

critical branching node. 

 

B. Branch Distance 

The branch distance is computed using the condition of 

the decision statement at which the flow of control 

diverted away from the current “target” branch. For 

every operator the branch distance is calculated using 

the formulas introduced by Tracey [19]. 

The approach level is more important that the branch 

distance and as a consequence the branch distance 

should be normalized at the fitness function formula. 

This distance will be normalized at a value between 0.0 

and 1.0. Value 0.0 means “true”; the desired branch has 

been reached. Values close to 1.0 means that the 

condition is far from being fulfilled. Intermediate values 

guide slightly the search towards the accomplishment of 

the condition (in order to remove plateaus in the fitness 

landscape). The formula for branch distance in our 

proposed fitness function is the formula introduced by 

Arcuri [21]. 

  (          )  
  

     
 

BD is the branch distance before normalization and β is 

1. 

New States Achieved (NSA) 

With the term state in this paper we refer to: 
 

Definition 1. State: The set of the values of all the fields 

in the CUT before calling a method + the method called. 

 

For example, for the class Stack the two states: 
 

 field size = 0 and filed st = !null, before calling 

method push 

 field size = 0 and filed st = !null, before calling 

method pop are considered two different states and both 

of them are interesting in the testing context.  

The total number of states in the CUT is computed as a 

product of all the possible combinations of the class 

fields (declared non final) after abstraction (explained in 

the next section), with the number of public methods. 

The approach level is more important that the number of 

new states achieved and as a consequence this factor 

should be normalized at the fitness function formula. 

The normalization formula is: 
 

    
                        

            
 

 

The greater the number of the new states achieved by a 

test case the smaller this factor in the overall fitness. 

The fitness function proposed considers the three factors 

described above and is computed with the formula: 

 

                        
  

    

 
                        

            
 

C. Abstract States 

If we use the real values of the fields, the number of 

states will be infinite. Moreover, not all the states are of 

equal relevance during testing. For example, from the 

testing prospective, calling method pop() of the class 

Stack with field size = 1, is the same as calling method 

pop with filed size = 2. On the other hand calling 

method pop() with filed size = 0 in not the same, since 

this state reveals an interesting behavior of the object 

under test. Therefore, we use abstractions over the 

values of the fields rather than the concrete values 

themselves. We use a state abstraction function provided 

by Dallmeier at al. [34]. The abstraction is performed 

based on the three rules below: 

 

 If the type of the field is concrete (int, double, long 

etc), the value will be translated in three abstract 

values: xi < 0, xi = 0 and xi > 0. 

 If the type of the field is an object, the value will be 

translated in two abstract values: xi = null dhe 

xi   null 
 If the type of the field is Boolean, there is no need 

to do translation, since there are only two values. 

For example the combinations of the field values of 

class Stack, after abstraction are those listed in Table 1. 

 
Table 1: Combination of field values for class stack 

 

 size st 

state1 = 0 null 
state2 > 0  null 
state3 < 0  null 

 

 

6. IMPLEMENTATION OF THE 

PROPOSED FITNESS FUNCTION 

The proposed fitness function was implemented in the 

eToc [22] tool. eToc is a simple search based tool for 

unit testing of Java programs. Is uses GA and branch 

coverage criterion. This tool has been mentioned in 

many research works and has been used as the basis for 

the design of other tools. eToc is appropriate for the 

scope used in this work. In the high level architecture of 

this tool [22], the Branch Instrumentor module and the 

Test Case Generator module need to be differently 
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implemented for the search to be guided by the proposed 

fitness function. The new implementation of these 

modules is described below. 

 

6.1 The Intrumentor 

The function of the instrumentor module is to transform 

the source code of the CUT in order to provide 

information about the executed branches, the branch 

distance and the states achieved during execution. The 

new statements added during instrumentation must not 

change the behavior of the CUT. In order to obtain 

information for the states reached by the object under 

test, for each of the attributes (except those declared 

final) of the CUT, a get method will be added. A static 

analysis can be used to provide information about the 

mutators and inspectors methods of a class [23][24], but 

in this case a static whole-program analysis is required, 

which is very expensive for this context used. Since it is 

not the purpose here to obtain a behavioral model of the 

CUT, the get methods are appropriate to be used as 

inspectors for obtaining the state of the object because 

these methods: 

 

 Return the value of an attribute 

 Do not take parameters 

 Do not have any side effects in the execution of 

the program.  

 

Based on the state definition given in section 5.C, the 

get methods should be called before the execution of 

each method of the CUT, so during instrumentation the 

statements calling the get methods are added before the 

existing statements of each method. The concrete values 

are translated in abstract values as described in section 

5.D. Then the states reached by a test case are saved in a 

LinkedList and consequently during fitness evaluation 

the new states achieved by a test case can obtained. 

 
   public class Stack { 

 private int size = 0; 

 private int st [] = new int [4]; 

 void push (int x){ 

  returnState(); 

  if (size < st.length) 

   st[size++] = x; 

 } 

 int pop (){ 

  returnState(); 

  return st[size --]; 

 } 

 public int getsize1(){ 

  return size; 

 } 

 public Object getst1(){ 

  return st; 

 } 

 public void returnState (){ 

 reachedStates.add(String.valueOf(getsiz

e1()+" "+getst1()); 

 } 

 static java.util.List reachedStates; 

 public static void newReachedStates() 

 { 

         reachedStates = new 

java.util.LinkedList(); 

 } 

} 

 
Fig. 3. Class Stack after instrumentation for the new ststes achieved 

 

6.2 The Test Case Generator 

The instrumented version of the CUT is executed 

repeatedly with the scope to cover a specified target 

(branch of the CUT). The state lists resulting after each 

execution are compared with the state lists of the test 

cases that make up the population. The new states 

reached by an individual are used to compute part of its 

fitness. 

This module is also responsible for the minimization of 

the generated test suite. Normally during minimization 

the tests that do not cover any target that is not covered 

by any other test are omitted from the test suite. Taking 

into consideration that a test case that reaches one or 

more new states is important in the testing context, 

before removing a test case because it does not cover 

any new target, it will be reconsidered regarding the 

states it puts the object under test in. The test cases 

which contain unreached states in their state lists, will be 

part of the final test suite. The proposed minimization 

has the advantage that it probably increases the number 

of tests in the generated test suite and as a consequence 

it also increases the length of the test suite. On the other 

side the usage of the proposed fitness function is 

expected to increase the capability of the test suite to 

detect errors. An experimental evaluation of the new 

fitness function is presented in the next section. 
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Table 2:  Characteristics of the Classes Selected for the Experiments: Name of the Project, LOC, Number of Public Methods, Number of Branches, 

Number of Mutants, Number of Non-Final Fields, Cyclomatic Complexity, Project URL 

 

 

7. EXPERIMENTAL EVALUATION 

In this work we aim to answer the following research 

questions: 

 

• RQ1: How does the usage of the proposed 

fitness function affect the branch coverage? 

• RQ2: How does the usage of the proposed 

fitness function affect the mutation score of the 

suite? 

• RQ3: How does the usage of the proposed 

fitness function affect the number of suite’s test 

cases and their size? 

 

7.1 System Characteristics 

For the experiments we used a desktop computer 

running Linux 32 bit Operating System, 1 GB of main 

memory and a Intel Core 2 Duo CPU E7400 2.8GHz x 2 

Processor. 

 

7.2 Subject Selection  

Selecting the classes under test is very important since 

this selection affects the results of the experiments. We 

chose 7 open source projects and selected randomly 23 

classes from them. Also, the class Stack discussed 

throughout this paper was used as a subject for the 

experiments. To obtain comprehensive results, the 

evaluation must be done to real and not simple subjects. 

Also these subjects should not have any common 

characteristics which affect the obtained results. The  

characteristics of the 24 classes are listed in Table 2. 

The information about LOC (without comments and 

empty lines) and cyclomatic complexity is obtained 

using Metrics 1.3.6 [25], as a plugin in Eclipse. As can 

be noted from Table 2, the classes have very different 

characteristics and complexity. 

Project Class LOC Branches Mutants Non-
final 

Fields 

Public 
Methods 

Cyclomatic 
Complexity 

URL e projektit 

  Staku 12 4 22 2 2 1.5   

Commons CLI 

  

  
  

Option 155 131 140 9 42 1.52 https://commons.apach

e.org 

  
  

  

TypeHandler 124 28 28 0 9 2.66 

AlreadySelectedExcept

ion 

26 4 1 2 2 1 

OptionGroup 86 21 19 2 8 1.875 

Math4J 

  

  
  

  

Rational 61 36 161 2 19 1.526 https://sourceforge.net/

projects/math4j 

  
  

  

  

ExponentialFunction 40 11 31 1 9 1 

ArrayUtil 320 167 1769 0 36 3.48 

PolyFunction 245 100 827 2 12 3.63 

Complex 102 24 682 2 20 1.091 

jdk (java.util 
v.1.8.0) 

StringTokenizer 313 78 434 7 6  3.12   

Genetic 
Algorithm in 

Java 

  
  

GAAlgorithm 65 14 6 6 8 2 https://sourceforge.net/
projects/gaj 

  

  

Genome 14 9 21 3 4 1.4 

Population 62 13 44 4 11 1.08 

ObjectExplore
r4J 

  

ExplorerFrame 158 26 74 8 9 1.44 https://sourceforge.net/
projects/objectexplorer 

  

  
  

  

  
  

  

ObjectViewManager 114 41 41 8 17 1.571 

NewzGrabber 

  
  

  

  
  

DirectoryDialog 177 47 155 16 13 2.235 https://sourceforge.net/

projects/newsgrabber 
 

NewsFactory 121 45 88 4 7 4 

SongInfo 55 12 59 3 4 2 

BatchJob 28 11 29 8 10 1.27 

StringSorter 63 12 47 1 4 2.2 

OptionsPanel 363 75 214 15 4 9.8 

Jipa 
  

Label 18 11 42 3 4 1.8 https://sourceforge.net/
projects/jipa 

  
Variable 40 23 87 3 4 2.1 

Total  276

2 
943 5021 111 264   
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Five of the projects were downloaded from SourceForge 

[26] which is today the greatest open source repository 

(more than 300,000 projects and two million of users). 

One project was downloaded from the Apache Software 

Foundation [27] which exists from 1999 and has more 

than 350 projects (including Apache HTTP Server). 

Class StringTokenizer was taken from the java.util 

package which is part of jdk 1.8.0. This package has 

been used by several studies for evaluation of automatic 

test case generation techniques.  

7.3  Parameters of GA  

Defining the parameters of GAs to obtain the optimal 

results is difficult and a lot of research effort is 

dedicated to this topic [28][29]. Therefore we let the 

parameters of the GA to their default values [22]. The 

values of three of the most relevant parameters are listed 

in Table 3. Regarding the search budget, it was 

determined depending on the experiment and will be 

shown next for each experiment.  

 

 

 

 

Table 3: Parameters of GA 

Parameter Value 

Population Size  10 

Search Budget  600s 

Maximal number of generations/target  10 

 

7.4 Experiment 

For each of the classes we run eToc with the following 

configurations: 
 

1. Original Fitness (OF) function with search 

budget of 2 min 

2. Proposed Fitness (PF) function with search 

budget of 2 min 

3. Original Fitness (OF) function with search 

budget of 10 min 

4. Proposed Fitness (PF) function with search 

budget of 2 min 
 

To overcome the randomness of the genetic algorithms 

each experiment was repeated 5 times.  

The results of the experiments (average of all runs) are 

presented in Table 4. 

 
Table 4:  Branch Coverage, Mutation Score, Number of Tests, Length of Test Suite for Each Configuration, Average of All Runs for Each Cut 

 
Class BC 

with 

OF (2 

min)  

BC with 

PF (2 

min) 

BC 

with 

OF (10 

min) 

BC 

with 

PF (10 

min) 

MS 

with OF 

(2 min) 

MS 

with 

PF (2 

min) 

MS 

with 

OF (10 

min) 

MS 

with 

PF (2 

min) 

No. 

test 

with 

OF 

Test 

length 

with 

OF 

No. 

test 

with 

PF 

Test 

length 

with 

PF 

Staku 100 100 100 100 29 72 29 72 2 8 4 15 

Option 69 69 69 69 41 49 41 49 62 147 71 166 

TypeHandler 75 75 75 75 46 46 46 46 12 24 12 24 

AlreadySelectedException 100 100 100 100 100 100 100 100 3 5 3 5 

OptionGroup 100 100 100 100 84 89 84 89 8 27 7 35 

Rational 94 94 94 94 75 79 75 79 12 24 12 31 

ExponentialFunction 100 100 100 100 60 55 60 60 8 16 7 15 

ArrayUtil 100 99 100 100 9 9 9 9 64 141 64 141 

PolyFunction  - - 85 87 - - 31 38 27 89 30 98 

Complex 100 100 100 100 34 37 34 37 13 27 12 31 

StringTokenizer 65 65 69 69 15 21 19 23 8 18 16 33 

GAAlgorithm 93 93 93 93 33 33 33 50 10 21 8 19 

Genome 44 44 55 55 0 4 0 4 3 6 4 10 

Population 92  92 100 100 32 32 32 32 11 29 11 29 

ExplorerFrame 8 15 8 15 0 3 0 3 2 2 2 3 

ObjectViewManager 54 54 54 54 17 24 17 24 2 3 2 3 

DirectoryDialog 6 6 6 6 0 0 0 0 5 11 5 11 

NewsFactory -  - - - - - - - - - - -  

SongInfo 50 50 50 50 22 27 24 27 5 12 8 19 
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BatchJob 100 100 100 100 62 69 62 69 10 20 9 22 

StringSorter  100 100 100 100 17 17 17 17 6 17 6 17 

OptionPanel -  - 37 37 - - 3 9 7 21 8 19 

Label 100 100 100 100 55 55 55 55 4 16 4 16 

Variable 100 100 100 100 55 56 56 59 6 9 9 19 

Average 60.5 69 74.8 75.2 37.9 42.7 35.9 41.5 - - - - 

Total - - - - - - - - 290 693 314 781 

 

 

8. RESULTS AND DISCUSSION 

• RQ1: How does the usage of the proposed 

fitness function affect the branch coverage? 
 

The branch coverage was measured with EclEmma. For 

both functions the average branch coverage is greater 

when the search budget is 10 min. This result was 

expected since the individuals improve during the search 

and more time results in better solutions.    

In order to do the best comparison of the approaches we 

focus on the case with search budget of 10 min in this 

section, since for the scope of the experiment, it is not 

appropriate to compare results affected by the limited 

search time.  

The difference between the average branch coverage is 

inconsiderable (0.4%) when a search budget of 10 min is 

used. This difference may be due to the randomness of 

the results achieved by the search. Since the approach 

presented in this work does not change the targets to 

cover, the almost equal coverage was expected. For the 

class ExplorerFrame, there is an increase of 7% in the 

coverage achieved by the proposed approach. Even 

though the targets are identical, the proposed function 

rewards the individuals that reach more new states and 

therefore the test cases after minimization may be 

different and more complex. So, this increase probably 

is the effect of indirect coverage. 

Only in the case of class ArrayUtil there was a decrease 

of 1% in the coverage achieved, with budget 2 min, but 

more likely it is due to the randomness of the search. For 

the class NewsFactory the search failed to produce 

results for both approaches. We changed the parameters 

of the GA, but even for a population of 20, or 30 

individuals, no results were generated. It is not the scope 

of this work to investigate the reasons why this 

happened. 
 

RQ1: In our experiments, there is no difference in 

the average branch coverage achieved between the 

usage of the original fitness function and the 

proposed fitness function.  

 

 

• RQ2: How does the usage of the proposed 

fitness function affect the mutation score of the 

suite? 
 

Since mutation score is the measure used in the 

strongest criterion (Mutation Coverage), here we have 

used it to measure the quality of the generated test suite. 

Computing the mutation score for a test suite requires 

determining, for every mutant, whether the test suite 

succeeds or fails when run on the mutant. In the worst 

case each test must be run on each mutant. For each of 

the classes the mutants were generated using as a plugin 

in Eclipse the tool MuClipse v1.3 [30]. MuClipse 

generates mutants using the traditional operators and the 

operators in the class level [31]. The number of 

generated mutants for each class is given in Table 2. 

Even classes with a small number of LOC can have 

many mutants (e.g. class Stack has 22 mutants). 

Assertions were inserted manually to the tests generated, 

so that these cases can be used by MuClipse. Then, the 

generated tests were executed with JUnit against all the 

mutants and the presence of failures shows that the tests 

were able to kill the mutants.  

The results of the mutation scores of each class for all 

the configurations are given in Table 4. 

The mutation scores achieved by both of the fitness 

functions are far from the optimal value (100%). Almost 

this range of mutation scores is also obtained from other 

studies [32]. The main reasons of these low scores are: 

 the targets to cover are the branches and not 

the mutants 

 the presence of equivalent mutants (behave the 

same as the original program) which cannot be 

killed. 

Nevertheless, despite the relatively low mutation scores, 

our interest is focused on the difference between the 

scores achieved by the original function against the 

proposed function. 

For 6 classes (6/23 = 26%) there is an improvement in 

the mutation score achieved when using a search budget 

of 10 min against a search budget of 2 min. 
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For the same reasons mentioned in the discussion of 

RQ1, to answer RQ2 we are focusing mainly at the 

results achieved with a search budget of 10 min. The 

average mutation score reached by the original function 

is 35.9%, whereas the mutation score reached by the 

proposed function is 41.5%, thus a difference of 5.6%. 

The improvement is 5.6/35.9 = 15.6%. For 15 classes 

out of 23 (15/23 = 65%), there is an improvement in the 

mutation score achieved by the proposed function; for 

the remaining 8 classes (8/23 = 35%), the scores 

achieved are identical. There is no class where using the 

proposed function results in a lower mutation score. 

Even though we are aware that the results depend on the 

CUT (despite the fact that CUT chosen have different 

characteristics), the results obtained are very promising. 

 

RQ2: In our experiments, the usage of the proposed 

fitness function results in a relative increase of 15.6% 

in the average mutation score achieved against the 

original fitness function.  

 

• RQ3: How does the usage of the proposed 

fitness function affect the number of suite’s test 

cases and their size? 

 

Automatically generated JUnit tests need to be manually 

checked in order to detect faults because automatic 

oracle generation is not possible today. This is the 

reason why not only the achieved coverage of the 

generated test suite is important, but the size of the test 

suite is of the same importance [33]. 

Here we refer to the size of a test suite as the number of 

statements after the minimization phase (without 

assertions). 

Only the results achieved with a search budget of 10 

min, are shown in Table 4, because in answering RQ3 

we are interested in the number of tests generated and 

their size in the “worst case”. The minimization phase 

does not depend on the search budget, so the results with 

search budget of 10 min, subsume the scenario with a 

search budget of 2 min. The LOC of the generated suite 

was obtained with the tool Metrics 1.3.6. 

There is an increase of 314 – 290 = 24 tests in the total 

number of test generated, or a relative increase of 

24/290 = 8.2%. This increase is acceptable, although the 

number of tests in the test suite is not relevant in respect 

to the size of the test suite, because having many short 

size tests is not a problem for the tester who is detecting 

faults. 

Regarding the size of the test suite, we can see from the 

results in Table 4, that using the proposed fitness 

function results in an average test suite size of 33.9 

(781/23) statements. The relative increase is (33.9 – 

30.1) / 30.1 = 12.6%. For 8 of the classes (34%), there is 

no change in the average test suite size. Regarding 

classes ExponentialFunction and GAAlgorithm (8.7% of 

the classes), there is a decrease in the average test suite 

size, although there is no decrease either in branch 

coverage or mutation score. These results are explained 

with the appearance of indirect coverage [36].  

     ArrayUtil is the class with the greatest test suite size 

because of the large number of branches (167). 

     The average increase in test suite size with the usage 

of the proposed function is the consequence of two 

reasons: 

 During the minimization phase the test cases that 

do not cover any target, but put the object under 

test in new states, are added in the minimized test 

suite (as explained in Section 6) 

 Two different fitness functions probably will 

generate different test suites with different 

number of statements (not necessarily a larger 

number). 

RQ3: In our experiments, the usage of the proposed 

fitness function results in a relative increase of 8.2% 

in the average number of test cases and 12.6% in the 

average test suite size achieved against the original 

fitness function. 

9. CONCLUSIONS 

This paper concerns the fitness function used to guide 

the search during automatic unit test generation of Java 

classes. The branch coverage criterion is easy to 

implement but can produce weak test sets. Test cases 

that put the object under test in new states discover 

hidden behaviors and consequently are relevant in the 

testing context. Targeting all the states during the search 

is impossible due to the fact that some of them are 

infeasible. In this article we presented a new fitness 

function that takes into consideration the states reached 

during the execution of a test case. The implementation 

of this fitness function is very simple since the targets to 

cover remain the branches, but the state evolve during 

the search and the minimization phase the tests that 

reach one or more new states are not removed even 

though these tests does not reach any uncovered 

branches. The usage of the proposed fitness function 

does not decrease the branch coverage and results in a 

relative increase of 15.6% in the achieved average 

mutation score with the cost of a relative increase of 

12.6% in the average test suite size. The results are 

promising but since the subjects under test are very 

different further evaluation of the proposed approach 

needs to be performed.  
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