
International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016

ISSN (Online): 2409-4285 www.IJCSSE.org Page: 265-272

Towards an Architecture for Integration of Feature Models

Vinicius Bischoff
1
, Kleinner Farias

2
, Lucian Gonçales

3
 and Vanessa Weber

4

1, 2, 3, 4

 Interdisciplinary Postgraduate Program on Applied Computing (PIPCA), University of Vale do Rio dos Sinos

(UNISINOS), Av. Unisinos, 950, Cristo Rei, São Leopoldo\RS, Brazil, CEP 93022-750

1
viniciusbischoff@gmail.com,

2
kleinnerfarias@unisinos.br,

3
lucianjosegoncales@gmail.com,

4
weber.nessa@gmail.com

ABSTRACT
The integration of variability models (e.g., feature models) is

considered an error-prone activity, which can consume a lot of

effort from development teams working in parallel, thereby

compromising developers’ productivity as well as the quality

of software developed. For this, many integration techniques

have been proposed in last decades to support developers to

integrate feature models. However, there is a lack of a generic

architecture that helps developers to produce integration tools

in the current literature. To overcome this shortcoming, this

work proposes a flexible, component-based architecture for

supporting the integration of feature models. In addition, a

model integration workflow for helping developers to improve

the understanding of the crucial composition activities and

their relationships is also presented.

Keywords: Feature Model, Model Integration, Tool Support,

Architecture.

1. INTRODUCTION

The software industry in recent years has been

increasing its production capacity, followed by a

demand for increasingly complex systems with the

objective of constant improvements in quality. In this

context, companies are faced with the challenge of

meeting the individual expectations of each customer

while at the same time efficiently executing the required

software engineering processes. Component reuse is one

of the strategies employed by engineering to reduce

costs and effort in system development.

The product lines emerged with this motivation, i.e., to

create families of products with characteristics common

to each other and systematize the reuse. The

combination of the concepts of product families and

customization originated the Software Product Line

(SPL), a set of software systems defined on a common

architecture that share the same set of features [1, 2].

The SPL is represented by several techniques, such as

the methods, FODA [3], FORM [4], CBMF [5],

FeatuRSEB [6], PLUSS [7]. The techniques propose or

use a notation or model to represent the variability of the

domain or architecture. The model of variability consists

of demonstrating the functionalities of a domain through

its characteristics as well as their respective

relationships and interdependencies through a

hierarchical structure [5, 8, 9, 10]. The way to represent

the variability of a SPL is through the Feature Model

(FM).

The adoption of feature models has become common in

mainstream software development projects in industry

[11, 14, 15]. In fact, researchers and practitioners have

widely used feature models for different purposes, e.g.,

to manage variability in the context of SPLs, helping

describe domain concepts in terms of their

commonalities and differences within a family of

software systems [12], specifying features (and their

dependencies) of product lines [8], deriving

automatically products from SPL [16], describing

variability in SPL by documenting features and their

valid combinations [40], or even help developers to

integrate the features of a family of software systems

[13].

Given that feature models can be created collaboratively

by different software-development teams [27], at some

time the models created in parallel must be integrated to

form a “big picture” view of the SPL as a whole. For

this reason, techniques of feature model integration have

been proposed, e.g., [9, 13, 17, 18]. The term integration

of feature models can be defined as a set of activities

that should be performed over two (or more) input

feature models, i.e., Feature Model A (FMA) and a

Feature Model B (FMB), in order to produce an output-

desired Feature Model AB (FMAB). In practice,

developers make use of integration techniques to

accommodate upcoming changes, i.e., typically found in

FMB, into the FMA.

 The integration of large feature models in software

industry has been an ever-present concern of researchers

[9, 19, 32], which have sought to elaborate precise and

efficient techniques to support the integration of

heterogeneous feature models. Without this technique

support, the production of desired feature models

becomes an error-prone and effort-consuming task [29,

30, 31]. Because of this, it is often the case that

266

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016

V. Bischoff et. al

developers end up examining all parts of the two input

feature models instead of prioritizing the overlapping

ones, i.e., those that often give rise to problems of

integration conflicts.

In addition, the integration of feature models has been

widely investigated in practice, given its pivotal role for

supporting the evolution of SPLs. For this reason, both

academia and industry have proposed several works in

recent years to support the feature model integration

practices [8, 9, 14].

Unfortunately, the techniques proposed in the literature

have demonstrated to be ineffective to support the

integration of feature models in real-world environments.

The limitations arise from the inflexibility in the

production of a new feature model; the tools are

proposed to automate their output [8, 9, 10, 12, 14], and

an incorrect implementation may compromise the model

architecture by providing rework for development teams

with a direct impact on effort, production costs, and,

mainly, on the quality of the product generated.

To overcome these shortcomings, this paper, therefore,

proposes a flexible, component-based architecture for

aiding the development of feature model integration

tools, hereafter called FMIt-Arch. In addition, a model

integration workflow for helping developers to improve

the understanding of the crucial composition activities

and their relationships is presented. Our preliminary

evaluation indicated that the proposed architecture might

support the development of tools for the integration of

feature models.

The remainder of the paper is organized as follows.

Section 2 contrasts this work with the current literature.

Section 3 presents the FMIt architecture. Section 4

describes the integration tool developed using the FMIt-

Arch. Finally, Section 5 presents some concluding

remarks and future work.

2. RELATED WORK

In the literature, several papers suggest the design and

implementation of merge operations (e.g., [10, 17, 18,

19]), in which separate FMs are used to model decision

taken by different development teams and the need for

integration. In Acher et al. [12], the authors compared

strengths and weaknesses of different implementation

approaches of composition operators. The study

provides some evidence that using generic model

composition frameworks have not helped. It proposes

the use of Boolean logic turns out to fulfill most of the

criteria expected from a merge operator. The use of CSP

solvers can also be considered in addition to SAT and

BDD techniques. A longer-term perspective is to

consider the implementation of diff and refactoring

operations for FM.

In [17], an algorithm is designed to automatically

determine the kind of relations between two FMs in

terms of sets of configuration. This work presents little

or no tool support to help product line designers’

measure the impact of their feature model modifications.

The authors presume that a compact representation of all

added and removed products would be an extension of

this proposed in improving tools for managing the

evolution of feature models.

In Berger et al. [12], the authors aimed at positioning

feature models in the field of software product lines.

This work highlights the attention that enterprises have

invested on features as a way for supporting the

development of their products. The authors then

explored the environments of these enterprises to

investigate the different aspects of the use of features in

real-world settings. They concluded enterprises do not

have common practices and guidelines to maintain and

manage features throughout the product life cycle.

Typical operations of inclusion and exclusion have been

overlooked, for example. Therefore, understanding the

field of integration of feature models is necessary to

pinpoint research gaps and develop a better support to

overcome these limitations.

In [13], the authors proposed syntactic and semantic

operators for integrating two input feature models.

Furthermore, other authors proposed syntactic and

semantic operators but with the purpose of

differentiating feature models [10]. In contrast, Segura

et al. [20] proposed using graph data structures to

automate the composition of feature models.

Integration of feature models is an important task since

the parallel manipulation of these artifacts has become

more often. Thus, industry will demand precise and

effective integration techniques. To this end, researchers

and practitioners need guidelines, and tools support the

development of the tasks of feature model integration.

Moreover, a precise technique for model composition is

needed due to developers demanding more effort when

using an inappropriate integration technique [21].

3. FMIt ARCHITECTURE

We present the FMIt’s built-in model integration

process by identifying the phases, the artifacts generated,

and the main activities required to transform the input

models, FMA and FMB, into an intended output

integrated model, FMAB. Moreover, it details the most

relevant characteristics related to designing and

implementation issues, including feature model elicited,

components that implement such features, architectural

design, and finally the derived tool for the integration of

feature models.

267

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016

V. Bischoff et. al

3.1 Model Integration Process

Figure 1 shows the model integration process proposed.

It is represented as an intelligible workflow, thus

allowing development teams to understand the activities

inherent in a process of composition in terms of phases,

their artifacts, activities and the flow between them. This

workflow is based on the previous studies [22, 24, 28]

Fig. 1. The proposed model integration process.

First Step: Analysis. The prime goal is to analyze the

input models adequately as a basis for assuring the

integration of compatible input models as well as

preventing input models with inconsistencies [8, 9, 10].

This step should attend to the Analysis Feature Model

criteria answering: are the input models of the same

type? Do the input models have conflicting? If the input

models do not attend to this milestone, the integration

process can be cancelled or repeated after the input

models are redesigned to comply with milestone criteria.

Second Step: Comparison. The chief goal is to

systematically compare the input models for

determining the degree of similarity between their

elements, thereby mitigating conflicts. The FMIt

architecture supports a range the strategies to reduce

risks. The inputs of this phase are: syntactic and

semantic. Since a natural language is acceptable

different interpretations causing ambiguity in the

comparison, trying to avoid equity between the

meanings to the words, we apply a thesaurus in

conjunction with a technique for comparison of string,

the algorithm of Jaro Distance. The comparison

strategies as well as a threshold will determine the rules

to be applied (automatic or semi-automatic).

Hence, producing the following outputs: (i) the

similarity matrix, specifying the degree of equivalence

(ranging from 0 to 1) between the input model elements;

(ii) the matching elements, a description of the elements

of FMA and FMB being considered equivalent; (iii) the

no-matching elements, a description of the elements of

FMA and FMB being considered no equivalent. Two

input feature models are considered distinct when the

degree of similarity between them is equal or lower than

0.95, the threshold used as an inference for decision

making, i.e. semi-automatic. If the threshold is higher or

identical to 1.00 or equal to 0.00, it applies the

integration strategies automatically according to the

established rules. If it is not possible to identify the

equivalence between feature models, the process will be

finished.

Third Step: Integration. The master goal is to

carefully bring together the matching and no-matching

features model for producing an output intended model,

FMAB. For this, the proposed integration technique takes

into account the similarity matrix, as well as the

description of the matching elements of the input

models. In addition, it uses a range of established

integration strategies, including union, intersection,

difference and complementary [12, 13, 17], to

accommodate the model from FMB into FMA, thereby

alleviating the more severe risks. The FMIt’s built

integration strategies compose the matching elements

while the no matching ones are just inserted into the

FMI. Thus, FMI represents the matching and no-

matching feature models, all blended systematically.

Fourth step: Evaluation. The key goal is to evaluate if

the output model produced in the previous step matches

the output intended one, i.e. FMI = FMAB. If FMI ≠

MAB, then FMI needs to be manipulated so that the

inconsistencies can be resolved. For this, the tool enters

semi-automatic mode checks if the output model is in

compliance with defined strategies to assist development

teams, more specifically developers in the face of

decision-making. If the model has inconsistencies, then

some transformation rules can be applied to transform

FMI into FMAB. This step ends producing the output

intended model. After detailing the integration process,

268

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016

V. Bischoff et. al

the next Section focuses on describing the design and

implementation issues required to put the process in

practice.

3.2 FMIt Architecture Feature Model

The FMIt architecture was proposed due to several

reasons and requirements identified in previous works

[21, 24]. Our experience with model integration has

indicated the need for reusable architecture to support

and guide the development of new integration tools. It is

representative of the model integration domain, since its

design decomposes the key concerns into well

modularized features.

Lastly, it allows evaluating the models generated and

persisting the results. Thus, the proposed architecture

provides a set of pivotal features, including analysis of

the input models, comparison of the input models,

integration of the equivalent input model, persistence of

the output model generated, and evaluation of the output

model

.

Fig. 2. A simplified FMIt-Arch.

Figure 2 shows a simplified view of FMIt-Arch’s feature

model. Thus, to develop integration tools developers

should firstly implement the mandatory features,

including analysis, comparison, integration, persistence,

and evaluation. Besides identifying a set of core

functionalities, the mandatory features seamlessly

specify their dependencies in an easy-to-understand

manner. An ever-present concern throughout the FMit

architecture was to assure the mandatory features

comply with the model integration process described in

Figure 2, for example, the analysis feature implements

the first step and the persistence feature provides the

functionality required to persist the output-integrated

model generated at the end of the model integration

process. The optional features are the types of file

format that the output-integrated model. The or features

are represented by the integration strategies, and the

comparison strategies, the latter are not shown in the

feature model for space constraints. Thus, one (or more)

comparison and composition strategy should be selected

when a integration tool is derived from the FMIt-Arch.

3.3 FMIt Architectural Components

Figure 3 shows the components that are responsible for

implementing the feature model as well as relates them

with the features depicted in Figure 2. The small squares

located on the left or bottom sides of the components

represent this feature component mapping. For instance,

the (I) on the top of the Integration component (Figure

3) indicates that this component contributes to the

implementation of the integration feature. This design-

for-features is supported by the component-based

development, a systematic feature component mapping

and aspect-oriented programming.

Fig. 3. The FMIt architectural components.

This method of decomposing components based on the

features allows creating autonomous, well-modularized

design elements within a model integration tool, thereby

promoting the reuse of previously elicited feature and

constructed components. Each component was designed

to: (1) be a self-contained module that encapsulates the

state and behavior of a set of executable elements, which

are responsible for the implementation of one (or more)

feature; (2) present emergent behaviors resulting from

the interaction of its executable elements, i.e., one or

more classes that realize the expected functionalities of

the features; and (3) have well-defined interfaces,

including the provided and required ones. For example,

to provide the behavior of matching two input models,

the Comparison component implements the provided

interface, Comparison Strategy. If new components are

inserted, then they should implement this interface only.

Moreover, Figure 3 focuses on presenting the

components as a coherent group of elements

implementing one (or more) feature. Each component

can be seen as a building block that plays a crucial role

within the model composition process.

3.3 FMIt Multilayered Architecture Layers

The logical, multilayered architecture enables us to

support a well-modularized design, thereby putting the

heterogeneous, crosscutting concerns, previously

269

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016

V. Bischoff et. al

described in Figure 2, in shape. Figure 4 illustrates the

component diagram, which focuses on presenting the

group of elements responsible for performing each

activity, specifically, which is, independent modules that

play a determining factor in the integration of feature

models.

Fig. 4. The FMIt architecture layers.

The architecture is composed by five layers: (1)

Presentation layer represents the topmost tier of the

application gathering the input data required performing

the functionalities and putting out the results to the

integration; (2) Application layer encompasses FMIt's

engine and its operators. It is responsible for

organization, along with its operators, the integration

process as a whole. The organization, plays a pivotal

role by providing the main entry point, coordinating

incoming integration requests, transforming the requests

into commands for the operators, and rendering views;

(3) Variability layer implements the variation points.

For this, aspectual components weave the behaviors

from design elements (from the business logic layer) to

the operators (in the application layer). Aspectual

components augment the operators with additional or

alternative behaviors, i.e. strategies and their rules; (4)

Business Logic layer defines a family of algorithms that

implement the FMIt characteristics. These algorithms

analyze the input models, seek to find the commonalities

and differences between the input models, integrate the

commonalities, and then evaluate the output models, and

(5) Infrastructure layer accommodates the concerns

related to handling exception, data access, persistence

and logging, which are key crosscutting functionalities

to put the integration process in practice

4. CASE STUDY

We evaluate this work by implementing a tool for

integration of feature models based on the FMIt

architecture. The tool, so-called FMIt, is an Eclipse

Plug-in that allows a seamless integration with Eclipse

Platform. In addition, it makes use of a range of Eclipse

modeling technologies, including EMF, FeatureIDE, to

implement all required activities described in the

process of feature model integration. FMit ties together

these technologies in such a way that makes it easy-to-

use, even for users with little or no Java or XML coding

experience. For example, FetureIDE reads and filters

information from the tags of files written in XML and

transforms it to an abstract data model in which input

model elements can be manipulated as objects.

The term integration of feature models can be defined as

a set of activities that must be performed with two (or

more) input resource models, i.e., Feature Model A

(FMA) and Feature Model B (FMB) in order to unify

these models for the generation of a new model, that is,

the desired feature model. The main challenge is to

solve the conflicts that have arisen in the composition of

these models. In figure 5, we present two feature models,

which will be integrated.

4.1 Feature Model Integration Tool – FMIt

Development

The implemented environment is an Eclipse platform

plugin [25]. This implies in the use of the features

offered by the platform, and, on the other hand, allowing

users to work with FetuareIDE while using the Eclipse

platform. Because many feature models are deployed in

Java, such as FeatureIDE, Betty, Familiar, using the

Eclipse platform also facilitates a possible code

generation within the same development environment.

The FeatureIDE [26] is an Eclipse-based framework,

whose key role is to cover the entire development

process and the incorporation of tools for the

implementation of SPL in an integrated development

framework.

In this scenario, the entire development process is

defined: analysis, comparison, integration and evolution,

being transformed until reaching the final goal, the FMIt

tool. The following is briefly described the steps taken

during the execution process, since they integrate the

models:

1. Tooling Definition. First is specified FeatureIDE

framework, which is an integral part of the ECLIPSE

plug-in, for modeling as well as FMIt tool support.

2. Definition of the graphic model. This phase

focuses on the definition of the elements and their

relationships, FODA [3]. That is, the creation or import

of the model, it is the graphic edition of the diagrams for

composition.

3. Tooling Generation. This activity will be used to

construct the new model. Displaying the results of the

FMIt tool, inherent to the integration of two feature

models, according to the applied strategies, returns as

model output. The automatic or semiautomatic approach

270

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016

V. Bischoff et. al

is established by the threshold according to the business

rules. Figure 5 shows an overview of the FMIt Tool

together with some of the framework components

highlighted with letters. The tool presents an initial view

to the integration of specific models within the

framework, and is discussed briefly below:

Package Explorer (A). For each new modeling project

that is created, there is a need to create and import files

that are used during the modeling process. The package

explorer has as central functionality to allow the

organization of the projects of the feature models, as

well as to accommodate the integration tool.

Modeling View (B-C). The models that are created

must necessarily be visualized with the objective of

meeting two basic requirements when using models:

comprehensibility and communication. Faced with this

need, modeling view allows developers to view and edit

models interactively. The feature models are

accommodated in conjunction with the FMIt tool, to

assist in exploring the inconsistencies when they exist,

in this example we have two models of features, FMA

and FMB to be integrated.

Console View (D). Once the models have been created

or imported, an overview of the distribution of the

present features is displayed and can be executed

through the console, consisting of the usability of the

tool.

5. CONCLUSIONS AND FUTURE WORK

This paper introduced a flexible, component-based

architecture for supporting the development of model

integration techniques, and an intelligible model

integration workflow for aiding designers to

comprehend the crucial integration activities and their

relationships more properly. We also reported the FMIt

tool, integration tools defined based on the FMIt-Arch.

The preliminary results have indicated that the proposed

architecture is able to support the development of

integration tools for Feature Models and assist the

development teams in their decision-making during the

integration process. Studies are still required, other than

case study presented, to check their usefulness and

applicability in the academic and industrial process with

the purpose of investigating its efficiency, effectiveness,

and its effectiveness, seeking to hone the proposed

technique.

The future investigations should seek to answer some

questions such as: (1) do designers invest significantly

more effort to develop a new integration technique than

derive one from FMIt tool? (2) How effective is FMIt to

combine realistic, semantically richer design models? (3)

How do development teams observe the benefits of the

integration process? Lastly, this work represents a first

step in a more ambitious agenda on better supporting the

elaboration of model composition techniques.

6. ACKNOWLEDGMENTS

This work was funded by CNPq Universal Project

14/2013 (grant number 480468/2013-3), Brazil.

REFERENCES

[1] I. Sommerville, Software Engineering. Addison

Wesley, 9 edition, 2011.

[2] L. Bass, P. Clements, and R. Kazman. Software

Architecture in Practice. Addison-Wesley, 1998.

[3] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and

A. S. Peterson. “Feature-oriented domain analysis

Fig. 5. FMIt tool

271

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016

V. Bischoff et. al

(FODA) feasibility study.” No. CMU/SEI-90-TR-21.

Carnegie-Mellon Univ Pittsburgh Pa Software

Engineering Inst, 1990.

[4] [4] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin and M.

Huh. “FORM: A feature-oriented reuse method with

domain-specific reference architectures.” Annals of

Software Engineering Vol. 5, No.1, 1998, pp. 143-168.

[5] [5] K. Czarnecki, S. Helsen, and U. W. Eisenecker.

“Formalizing Cardinality-Based Feature Models and

their specialization.” Software process: Improvement

and practice, Vol. 10, No.1, 2005, pp. 7-29.

[6] [6] J. Favaro, and S. Mazzini. “Extending FeatuRSEB

with concepts from systems engineering.” International

Conference on Software Reuse. Springer Berlin

Heidelberg, 2009.

[7] [7] M. Eriksson, J. Börstler, and K. Borg. “The PLUSS

approach–domain modeling with features, use cases

and use case realizations.” International Conference on

Software Product Lines. Springer Berlin Heidelberg,

2005, pp. 33-44.

[8] [8] D. Batory. “Feature Models, Grammars, and

Propositional Formulas.” In Proc. Int’l Software

Product Line Conference, vol. 3714 of LNCS,

Springer, 2005, pp. 7–20.

[9] [9] D. Benavides, S. Segura, and A. Ruiz-Cortés.

“Automated analysis of feature models 20 years later:

A literature review.” Information Systems, Vol. 35,

No. 6, 2010, pp. 615-636.

[10] [10] K. Czarnecki and U. W. Eisenecker. “Generative

Programming: Methods, Tools, and Applications.”

ACM Press/Addison Wesley, 2000.

[11] [11] S. Apel, and C. Kästner. “An Overview of

Feature-Oriented Software Development.” Journal of

Object Technology, Vol. 8, No. 5, 2009, pp. 49-84.

[12] [12] M. Acher, P. Collet, P. Lahire and R. B. France.

“Comparing approaches to implement feature model

composition.” European Conference on Modelling

Foundations and Applications. Springer Berlin

Heidelberg, 2010, pp 3-19.

[13] [13] M. Acher, P. Collet, P. Lhire and R. B. France.

“Composing feature models.” International Conference

on Software Language Engineering. Springer Berlin

Heidelberg, 2009, pp. 62-81.

[14] [14] T. Berger, D. Lettner, J. Rubin, P. Grunbacher, A.

Silva, M. Becker, M. Chechik and K. Czarnecki.

“What is a feature?: a qualitative study of features in

industrial software product lines.” Proceedings of the

19th International Conference on Software Product

Line. ACM, 2015, pp. 16-25

[15] [15] A. Classen, P. Heymans, and P. Schobbens.

“What’s in a feature: A requirements engineering

perspective.” International Conference on Fundamental

Approaches to Software Engineering. Springer Berlin

Heidelberg, 2008, pp. 16-30.

[16] [16] D. Beuche, and M. Dalgarno. “Software product

line engineering with feature models.” Overload

Journal, vol. 78, 2007, pp. 5-8.

[17] [17] T. Thomas, D. Batory, and C. Kastner.

“Reasoning about edits to feature models.” 2009 IEEE

31st International Conference on Software

Engineering. IEEE, 2009, pp 254-264.

[18] [18] S. Apel, J. M. Atlee, L. Baresi and P. Zave.

“Feature interactions: the next generation”. Dagstuhl

Reports, Vol. 4, No. 7, 2014.

[19] [19] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M.

Bcker, K. Czarnecki and A. Wasowski. “A survey of

variability modeling in industrial practice.”

Proceedings of the Seventh International Workshop on

Variability Modelling of Software-intensive Systems.

ACM, 2013, pp.7.

[20] [20] S., Sergio, D. Benavides, A. Ruiz-Cortés.

“Automated merging of feature models using graph

transformations.” Generative and Transformational

Techniques in Software Engineering II. Springer Berlin

Heidelberg, 2008. pp.489-505.

[21] [21] K. Farias, A. Garcia, J. Whittle, C. v. F. G.

Chavez and C. Lucena. “Evaluating the effort of

composing design models: a controlled experiment.”

Software & Systems Modeling, Vol. 14, No. 4, 2015,

pp. 1349-1365.

[22] [22] K. Farias and T. C. Oliveira. “A guidance for

model composition.” International Conference on

Software Engineering Advances - ICSEA. IEEE, 2007.

pp.27-27.

[23] [23] S. Krieter, R. Schröter, T. Thüm, W. Fenske and

G. Saake. “Comparing algorithms for efficient feature-

model slicing.” Proceedings of the 20th International

Systems and Software Product Line Conference. ACM,

2016, pp.60-64.

[24] [24] K. Oliveira, K. Breitman, and T. C. Oliveira. “A

Flexible Strategy-Based Model Comparison Approach:

Bridging the Syntactic and Semantic Gap.” J. UCS,

Vol. 15, No. 11, 2009, pp. 2225-2253.

[25] [25] Eclipse Platform, www.eclipse.org, Accessed June

22, 2016.

[26] [26] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G.

Saake and T. Leich. “FeatureIDE: An extensible

framework for feature-oriented software development.”

Science of Computer Programming, Vol. 79, 2014, pp.

70-85.

[27] [27] K. Farias. “Empirical evaluation of effort on

composing design models.” Ph.D. thesis, Department

of Informatics, PUC-Rio, Rio de Janeiro, Brazil, 2012.

[28] [28] K. Farias, L. Gonçales, M. Scholl, T. C. Oliveira

and M. Veronez, “Toward an Architecture for Model

Composition Techniques”, The 27th International

Conference on Software Engineering and Knowledge

Engineering, Pittsburgh, PA, USA, 2015, pp. 656-659.

[29] [29] K. Farias, A. Garcia, J. Whittle, C. Lucena.

“Analyzing the Effort of Composing Design Models of

Large-Scale Software in Industrial Case Studies.” In:

16th International Conference on Model-Driven

Engineering Languages and Systems (MODELS'13),

pp. 639-655, Miami, USA, September 2013.

[30] [30] K. Farias, A. Garcia, C. Lucena. “Evaluating the

Impact of Aspects on Inconsistency Detection Effort: A

Controlled Experiment.” In: 5th International

Conference on Model-Driven Engineering Languages

and Systems (MODELS'12), Vol. 7590, pp. 219-234,

Innsbruck, Austria, 2012.

[31] [31] K. Farias, “Empirical Evaluation of Effort on

Composing Design Models.” In: 32nd ACM/IEEE

272

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016

V. Bischoff et. al

International Conference on Software Engineering,

Doctoral Symposium, Vol. 2, pp. 405-408, Cape Town,

South Africa, 2010.

[32] [32] E. Guimarães, A. Garcia, K. Farias. “Analyzing

the Effects of Aspect Properties on Model Composition

Effort: A Replicated Study.” In: 6th Workshop on

Aspect-Oriented Modeling at MODELS'10, Oslo,

Norway, 2010.

