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ABSTRACT 
The integration of variability models (e.g., feature models) is 

considered an error-prone activity, which can consume a lot of 

effort from development teams working in parallel, thereby 

compromising developers’ productivity as well as the quality 

of software developed. For this, many integration techniques 

have been proposed in last decades to support developers to 

integrate feature models. However, there is a lack of a generic 

architecture that helps developers to produce integration tools 

in the current literature. To overcome this shortcoming, this 

work proposes a flexible, component-based architecture for 

supporting the integration of feature models. In addition, a 

model integration workflow for helping developers to improve 

the understanding of the crucial composition activities and 

their relationships is also presented. 

 

Keywords: Feature Model, Model Integration, Tool Support, 

Architecture. 

1. INTRODUCTION 

The software industry in recent years has been 

increasing its production capacity, followed by a 

demand for increasingly complex systems with the 

objective of constant improvements in quality. In this 

context, companies are faced with the challenge of 

meeting the individual expectations of each customer 

while at the same time efficiently executing the required 

software engineering processes. Component reuse is one 

of the strategies employed by engineering to reduce 

costs and effort in system development. 

The product lines emerged with this motivation, i.e., to 

create families of products with characteristics common 

to each other and systematize the reuse. The 

combination of the concepts of product families and 

customization originated the Software Product Line 

(SPL), a set of software systems defined on a common 

architecture that share the same set of features [1, 2].  

The SPL is represented by several techniques, such as 

the methods, FODA [3], FORM [4], CBMF [5], 

FeatuRSEB [6], PLUSS [7]. The techniques propose or 

use a notation or model to represent the variability of the 

domain or architecture. The model of variability consists 

of demonstrating the functionalities of a domain through 

its characteristics as well as their respective 

relationships and interdependencies through a 

hierarchical structure [5, 8, 9, 10]. The way to represent 

the variability of a SPL is through the Feature Model 

(FM). 

The adoption of feature models has become common in 

mainstream software development projects in industry 

[11, 14, 15]. In fact, researchers and practitioners have 

widely used feature models for different purposes, e.g., 

to manage variability in the context of SPLs, helping 

describe domain concepts in terms of their 

commonalities and differences within a family of 

software systems [12], specifying features (and their 

dependencies) of product lines [8], deriving 

automatically products from SPL [16], describing 

variability in SPL by documenting features and their 

valid combinations [40], or even help developers to 

integrate the features of a family of software systems 

[13]. 

Given that feature models can be created collaboratively 

by different software-development teams [27], at some 

time the models created in parallel must be integrated to 

form a “big picture” view of the SPL as a whole. For 

this reason, techniques of feature model integration have 

been proposed, e.g., [9, 13, 17, 18]. The term integration 

of feature models can be defined as a set of activities 

that should be performed over two (or more) input 

feature models, i.e., Feature Model A (FMA) and a 

Feature Model B (FMB), in order to produce an output-

desired Feature Model AB (FMAB). In practice, 

developers make use of integration techniques to 

accommodate upcoming changes, i.e., typically found in 

FMB, into the FMA.    

 The integration of large feature models in software 

industry has been an ever-present concern of researchers 

[9, 19, 32], which have sought to elaborate precise and 

efficient techniques to support the integration of 

heterogeneous feature models. Without this technique 

support, the production of desired feature models 

becomes an error-prone and effort-consuming task [29, 

30, 31]. Because of this, it is often the case that 
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developers end up examining all parts of the two input 

feature models instead of prioritizing the overlapping 

ones, i.e., those that often give rise to problems of 

integration conflicts. 

In addition, the integration of feature models has been 

widely investigated in practice, given its pivotal role for 

supporting the evolution of SPLs. For this reason, both 

academia and industry have proposed several works in 

recent years to support the feature model integration 

practices [8, 9, 14]. 

Unfortunately, the techniques proposed in the literature 

have demonstrated to be ineffective to support the 

integration of feature models in real-world environments. 

The limitations arise from the inflexibility in the 

production of a new feature model; the tools are 

proposed to automate their output [8, 9, 10, 12, 14], and 

an incorrect implementation may compromise the model 

architecture by providing rework for development teams 

with a direct impact on effort, production costs, and, 

mainly, on the quality of the product generated.  

To overcome these shortcomings, this paper, therefore, 

proposes a flexible, component-based architecture for 

aiding the development of feature model integration 

tools, hereafter called FMIt-Arch. In addition, a model 

integration workflow for helping developers to improve 

the understanding of the crucial composition activities 

and their relationships is presented. Our preliminary 

evaluation indicated that the proposed architecture might 

support the development of tools for the integration of 

feature models. 

The remainder of the paper is organized as follows. 

Section 2 contrasts this work with the current literature. 

Section 3 presents the FMIt architecture. Section 4 

describes the integration tool developed using the FMIt-

Arch. Finally, Section 5 presents some concluding 

remarks and future work. 

2. RELATED WORK 

In the literature, several papers suggest the design and 

implementation of merge operations (e.g., [10, 17, 18, 

19]), in which separate FMs are used to model decision 

taken by different development teams and the need for 

integration. In Acher et al. [12], the authors compared 

strengths and weaknesses of different implementation 

approaches of composition operators. The study 

provides some evidence that using generic model 

composition frameworks have not helped. It proposes 

the use of Boolean logic turns out to fulfill most of the 

criteria expected from a merge operator. The use of CSP 

solvers can also be considered in addition to SAT and 

BDD techniques. A longer-term perspective is to 

consider the implementation of diff and refactoring 

operations for FM.    

In [17], an algorithm is designed to automatically 

determine the kind of relations between two FMs in 

terms of sets of configuration. This work presents little 

or no tool support to help product line designers’ 

measure the impact of their feature model modifications. 

The authors presume that a compact representation of all 

added and removed products would be an extension of 

this proposed in improving tools for managing the 

evolution of feature models.  

In Berger et al. [12], the authors aimed at positioning 

feature models in the field of software product lines. 

This work highlights the attention that enterprises have 

invested on features as a way for supporting the 

development of their products. The authors then 

explored the environments of these enterprises to 

investigate the different aspects of the use of features in 

real-world settings. They concluded enterprises do not 

have common practices and guidelines to maintain and 

manage features throughout the product life cycle. 

Typical operations of inclusion and exclusion have been 

overlooked, for example. Therefore, understanding the 

field of integration of feature models is necessary to 

pinpoint research gaps and develop a better support to 

overcome these limitations. 

In [13], the authors proposed syntactic and semantic 

operators for integrating two input feature models. 

Furthermore, other authors proposed syntactic and 

semantic operators but with the purpose of 

differentiating feature models [10]. In contrast, Segura 

et al. [20] proposed using graph data structures to 

automate the composition of feature models.  

Integration of feature models is an important task since 

the parallel manipulation of these artifacts has become 

more often. Thus, industry will demand precise and 

effective integration techniques. To this end, researchers 

and practitioners need guidelines, and tools support the 

development of the tasks of feature model integration. 

Moreover, a precise technique for model composition is 

needed due to developers demanding more effort when 

using an inappropriate integration technique [21].        

3. FMIt ARCHITECTURE 

We present the FMIt’s built-in model integration 

process by identifying the phases, the artifacts generated, 

and the main activities required to transform the input 

models, FMA and FMB, into an intended output 

integrated model, FMAB. Moreover, it details the most 

relevant characteristics related to designing and 

implementation issues, including feature model elicited, 

components that implement such features, architectural 

design, and finally the derived tool for the integration of 

feature models.    
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3.1 Model Integration Process 

Figure 1 shows the model integration process proposed. 

It is represented as an intelligible workflow, thus 

allowing development teams to understand the activities 

inherent in a process of composition in terms of phases, 

their artifacts, activities and the flow between them. This 

workflow is based on the previous studies [22, 24, 28] 

 

 

Fig. 1. The proposed model integration process. 

First Step: Analysis. The prime goal is to analyze the 

input models adequately as a basis for assuring the 

integration of compatible input models as well as 

preventing input models with inconsistencies [8, 9, 10]. 

This step should attend to the Analysis Feature Model 

criteria answering: are the input models of the same 

type? Do the input models have conflicting? If the input 

models do not attend to this milestone, the integration 

process can be cancelled or repeated after the input 

models are redesigned to comply with milestone criteria. 

Second Step: Comparison. The chief goal is to 

systematically compare the input models for 

determining the degree of similarity between their 

elements, thereby mitigating conflicts. The FMIt 

architecture supports a range the strategies to reduce 

risks. The inputs of this phase are: syntactic and 

semantic. Since a natural language is acceptable 

different interpretations causing ambiguity in the 

comparison, trying to avoid equity between the 

meanings to the words, we apply a thesaurus in 

conjunction with a technique for comparison of string, 

the algorithm of Jaro Distance. The comparison 

strategies as well as a threshold will determine the rules 

to be applied (automatic or semi-automatic). 

Hence, producing the following outputs: (i) the 

similarity matrix, specifying the degree of equivalence 

(ranging from 0 to 1) between the input model elements; 

(ii) the matching elements, a description of the elements 

of FMA and FMB being considered equivalent; (iii) the 

no-matching elements, a description of the elements of 

FMA and FMB being considered no equivalent. Two 

input feature models are considered distinct when the 

degree of similarity between them is equal or lower than 

0.95, the threshold used as an inference for decision 

making, i.e. semi-automatic. If the threshold is higher or 

identical to 1.00 or equal to 0.00, it applies the 

integration strategies automatically according to the 

established rules. If it is not possible to identify the 

equivalence between feature models, the process will be 

finished. 

Third Step: Integration. The master goal is to 

carefully bring together the matching and no-matching 

features model for producing an output intended model, 

FMAB. For this, the proposed integration technique takes 

into account the similarity matrix, as well as the 

description of the matching elements of the input 

models. In addition, it uses a range of established 

integration strategies, including union, intersection, 

difference and complementary [12, 13, 17], to 

accommodate the model from FMB into FMA, thereby 

alleviating the more severe risks. The FMIt’s built 

integration strategies compose the matching elements 

while the no matching ones are just inserted into the 

FMI. Thus, FMI represents the matching and no-

matching feature models, all blended systematically. 

Fourth step: Evaluation. The key goal is to evaluate if 

the output model produced in the previous step matches 

the output intended one, i.e. FMI = FMAB. If FMI ≠ 

MAB, then FMI needs to be manipulated so that the 

inconsistencies can be resolved. For this, the tool enters 

semi-automatic mode checks if the output model is in 

compliance with defined strategies to assist development 

teams, more specifically developers in the face of 

decision-making. If the model has inconsistencies, then 

some transformation rules can be applied to transform 

FMI into FMAB. This step ends producing the output 

intended model. After detailing the integration process, 
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the next Section focuses on describing the design and 

implementation issues required to put the process in 

practice.    

3.2 FMIt Architecture Feature Model 

The FMIt architecture was proposed due to several 

reasons and requirements identified in previous works 

[21, 24]. Our experience with model integration has 

indicated the need for reusable architecture to support 

and guide the development of new integration tools. It is 

representative of the model integration domain, since its 

design decomposes the key concerns into well 

modularized features.    

Lastly, it allows evaluating the models generated and 

persisting the results. Thus, the proposed architecture 

provides a set of pivotal features, including analysis of 

the input models, comparison of the input models, 

integration of the equivalent input model, persistence of 

the output model generated, and evaluation of the output 

model 

. 

 

Fig. 2. A simplified FMIt-Arch. 

Figure 2 shows a simplified view of FMIt-Arch’s feature 

model. Thus, to develop integration tools developers 

should firstly implement the mandatory features, 

including analysis, comparison, integration, persistence, 

and evaluation. Besides identifying a set of core 

functionalities, the mandatory features seamlessly 

specify their dependencies in an easy-to-understand 

manner. An ever-present concern throughout the FMit 

architecture was to assure the mandatory features 

comply with the model integration process described in 

Figure 2, for example, the analysis feature implements 

the first step and the persistence feature provides the 

functionality required to persist the output-integrated 

model generated at the end of the model integration 

process. The optional features are the types of file 

format that the output-integrated model. The or features 

are represented by the integration strategies, and the 

comparison strategies, the latter are not shown in the 

feature model for space constraints. Thus, one (or more) 

comparison and composition strategy should be selected 

when a integration tool is derived from the FMIt-Arch. 

3.3 FMIt Architectural Components 

Figure 3 shows the components that are responsible for 

implementing the feature model as well as relates them 

with the features depicted in Figure 2. The small squares 

located on the left or bottom sides of the components 

represent this feature component mapping. For instance, 

the (I) on the top of the Integration component (Figure 

3) indicates that this component contributes to the 

implementation of the integration feature. This design-

for-features is supported by the component-based 

development, a systematic feature component mapping 

and aspect-oriented programming. 

 

 

Fig. 3. The FMIt architectural components. 

This method of decomposing components based on the 

features allows creating autonomous, well-modularized 

design elements within a model integration tool, thereby 

promoting the reuse of previously elicited feature and 

constructed components.  Each component was designed 

to: (1) be a self-contained module that encapsulates the 

state and behavior of a set of executable elements, which 

are responsible for the implementation of one (or more) 

feature; (2) present emergent behaviors resulting from 

the interaction of its executable elements, i.e., one or 

more classes that realize the expected functionalities of 

the features; and (3) have well-defined interfaces, 

including the provided and required ones.  For example, 

to provide the behavior of matching two input models, 

the Comparison component implements the provided 

interface, Comparison Strategy. If new components are 

inserted, then they should implement this interface only. 

Moreover, Figure 3 focuses on presenting the 

components as a coherent group of elements 

implementing one (or more) feature. Each component 

can be seen as a building block that plays a crucial role 

within the model composition process. 

3.3 FMIt Multilayered Architecture Layers   

The logical, multilayered architecture enables us to 

support a well-modularized design, thereby putting the 

heterogeneous, crosscutting concerns, previously 
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described in Figure 2, in shape. Figure 4 illustrates the 

component diagram, which focuses on presenting the 

group of elements responsible for performing each 

activity, specifically, which is, independent modules that 

play a determining factor in the integration of feature 

models. 

 

 

Fig. 4. The FMIt architecture layers. 

The architecture is composed by five layers: (1) 

Presentation layer represents the topmost tier of the 

application gathering the input data required performing 

the functionalities and putting out the results to the 

integration; (2) Application layer encompasses FMIt's 

engine and its operators. It is responsible for 

organization, along with its operators, the integration 

process as a whole. The organization, plays a pivotal 

role by providing the main entry point, coordinating 

incoming integration requests, transforming the requests 

into commands for the operators, and rendering views; 

(3) Variability layer implements the variation points. 

For this, aspectual components weave the behaviors 

from design elements (from the business logic layer) to 

the operators (in the application layer). Aspectual 

components augment the operators with additional or 

alternative behaviors, i.e. strategies and their rules; (4) 

Business Logic layer defines a family of algorithms that 

implement the FMIt characteristics. These algorithms 

analyze the input models, seek to find the commonalities 

and differences between the input models, integrate the 

commonalities, and then evaluate the output models, and 

(5) Infrastructure layer accommodates the concerns 

related to handling exception, data access, persistence 

and logging, which are key crosscutting functionalities 

to put the integration process in practice 

4. CASE STUDY 

We evaluate this work by implementing a tool for 

integration of feature models based on the FMIt 

architecture. The tool, so-called FMIt, is an Eclipse 

Plug-in that allows a seamless integration with Eclipse 

Platform. In addition, it makes use of a range of Eclipse 

modeling technologies, including EMF, FeatureIDE, to 

implement all required activities described in the 

process of feature model integration. FMit ties together 

these technologies in such a way that makes it easy-to-

use, even for users with little or no Java or XML coding 

experience. For example, FetureIDE reads and filters 

information from the tags of files written in XML and 

transforms it to an abstract data model in which input 

model elements can be manipulated as objects. 

The term integration of feature models can be defined as 

a set of activities that must be performed with two (or 

more) input resource models, i.e., Feature Model A 

(FMA) and Feature Model B (FMB) in order to unify 

these models for the generation of a new model, that is, 

the desired feature model. The main challenge is to 

solve the conflicts that have arisen in the composition of 

these models. In figure 5, we present two feature models, 

which will be integrated. 

4.1 Feature Model Integration Tool – FMIt 

Development   

The implemented environment is an Eclipse platform 

plugin [25]. This implies in the use of the features 

offered by the platform, and, on the other hand, allowing 

users to work with FetuareIDE while using the Eclipse 

platform. Because many feature models are deployed in 

Java, such as FeatureIDE, Betty, Familiar, using the 

Eclipse platform also facilitates a possible code 

generation within the same development environment.  

The FeatureIDE [26] is an Eclipse-based framework, 

whose key role is to cover the entire development 

process and the incorporation of tools for the 

implementation of SPL in an integrated development 

framework. 

In this scenario, the entire development process is 

defined: analysis, comparison, integration and evolution, 

being transformed until reaching the final goal, the FMIt 

tool. The following is briefly described the steps taken 

during the execution process, since they integrate the 

models: 

1. Tooling Definition. First is specified FeatureIDE 

framework, which is an integral part of the ECLIPSE 

plug-in, for modeling as well as FMIt tool support.  

2. Definition of the graphic model. This phase 

focuses on the definition of the elements and their 

relationships, FODA [3]. That is, the creation or import 

of the model, it is the graphic edition of the diagrams for 

composition.  

3. Tooling Generation. This activity will be used to 

construct the new model. Displaying the results of the 

FMIt tool, inherent to the integration of two feature 

models, according to the applied strategies, returns as 

model output. The automatic or semiautomatic approach 
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is established by the threshold according to the business 

rules. Figure 5 shows an overview of the FMIt Tool 

together with some of the framework components 

highlighted with letters. The tool presents an initial view 

to the integration of specific models within the 

framework, and is discussed briefly below:   

Package Explorer (A). For each new modeling project 

that is created, there is a need to create and import files 

that are used during the modeling process. The package 

explorer has as central functionality to allow the 

organization of the projects of the feature models, as 

well as to accommodate the integration tool. 

Modeling View (B-C). The models that are created 

must necessarily be visualized with the objective of 

meeting two basic requirements when using models: 

comprehensibility and communication. Faced with this 

need, modeling view allows developers to view and edit 

models interactively. The feature models are 

accommodated in conjunction with the FMIt tool, to 

assist in exploring the inconsistencies when they exist, 

in this example we have two models of features, FMA 

and FMB to be integrated. 

Console View (D). Once the models have been created 

or imported, an overview of the distribution of the 

present features is displayed and can be executed 

through the console, consisting of the usability of the 

tool.  

5. CONCLUSIONS AND FUTURE WORK 

This paper introduced a flexible, component-based 

architecture for supporting the development of model 

integration techniques, and an intelligible model 

integration workflow for aiding designers to 

comprehend the crucial integration activities and their 

relationships more properly. We also reported the FMIt 

tool, integration tools defined based on the FMIt-Arch. 

The preliminary results have indicated that the proposed 

architecture is able to support the development of 

integration tools for Feature Models and assist the 

development teams in their decision-making during the 

integration process. Studies are still required, other than 

case study presented, to check their usefulness and 

applicability in the academic and industrial process with 

the purpose of investigating its efficiency, effectiveness, 

and its effectiveness, seeking to hone the proposed 

technique. 

The future investigations should seek to answer some 

questions such as: (1) do designers invest significantly 

more effort to develop a new integration technique than 

derive one from FMIt tool? (2) How effective is FMIt to 

combine realistic, semantically richer design models? (3) 

How do development teams observe the benefits of the 

integration process? Lastly, this work represents a first 

step in a more ambitious agenda on better supporting the 

elaboration of model composition techniques. 
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